{"title":"对流主导扩散反应问题的自适应最小二乘法","authors":"Zhiqiang Cai , Binghe Chen , Jing Yang","doi":"10.1016/j.camwa.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies adaptive least-squares finite element methods for convection-dominated diffusion-reaction problems. The least-squares methods are based on the first-order system of the primal and dual variables with various ways of imposing outflow boundary conditions. The coercivity of the homogeneous least-squares functionals are established, and the a priori error estimates of the least-squares methods are obtained in a norm that incorporates the streamline derivative. All methods have the same convergence rate provided that meshes in the layer regions are fine enough. To increase computational accuracy and reduce computational cost, adaptive least-squares methods are implemented and numerical results are presented for some test problems.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive least-squares methods for convection-dominated diffusion-reaction problems\",\"authors\":\"Zhiqiang Cai , Binghe Chen , Jing Yang\",\"doi\":\"10.1016/j.camwa.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies adaptive least-squares finite element methods for convection-dominated diffusion-reaction problems. The least-squares methods are based on the first-order system of the primal and dual variables with various ways of imposing outflow boundary conditions. The coercivity of the homogeneous least-squares functionals are established, and the a priori error estimates of the least-squares methods are obtained in a norm that incorporates the streamline derivative. All methods have the same convergence rate provided that meshes in the layer regions are fine enough. To increase computational accuracy and reduce computational cost, adaptive least-squares methods are implemented and numerical results are presented for some test problems.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003675\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003675","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Adaptive least-squares methods for convection-dominated diffusion-reaction problems
This paper studies adaptive least-squares finite element methods for convection-dominated diffusion-reaction problems. The least-squares methods are based on the first-order system of the primal and dual variables with various ways of imposing outflow boundary conditions. The coercivity of the homogeneous least-squares functionals are established, and the a priori error estimates of the least-squares methods are obtained in a norm that incorporates the streamline derivative. All methods have the same convergence rate provided that meshes in the layer regions are fine enough. To increase computational accuracy and reduce computational cost, adaptive least-squares methods are implemented and numerical results are presented for some test problems.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).