Shu-Jun Chen , Tong He , Xi-Hui Diao , Yaseen Muhammad , Na Liu , Chao Chen , Hao Wang , Wei Li , Chuan-Song Qi
{"title":"制备两种三维 Ln-MOFs 作为高灵敏度的 Fe3+ 和 Cr3+ 离子发光传感器","authors":"Shu-Jun Chen , Tong He , Xi-Hui Diao , Yaseen Muhammad , Na Liu , Chao Chen , Hao Wang , Wei Li , Chuan-Song Qi","doi":"10.1016/j.jssc.2024.124988","DOIUrl":null,"url":null,"abstract":"<div><p>Two new isostructural lanthanide(III)−metal organic frameworks (Ln-MOFs), namely [Ln<sub>2</sub>(FDA)<sub>3</sub>(TMS)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·H<sub>2</sub>O (Ln = Eu <strong>1</strong> and Tb <strong>2</strong>, H<sub>2</sub>FDA = 2,5-furandicarboxylic acid, TMS = tetramethylene sulfone), have been synthesized and characterized. Single-crystal X-ray diffraction analysis reveals that both Ln-MOFs exhibit three-dimensional structures crystallizing in the monoclinic <em>C</em>2/<em>c</em> space group. Luminescent sensing studies indicate that <strong>1</strong> and <strong>2</strong> possess commendable capabilities for detecting Fe<sup>3+</sup> and Cr<sup>3+</sup>, with low detection limits of 20.00 nM and 43.41 nM for <strong>1</strong> and 66.10 nM and 0.37 μM for <strong>2</strong>, respectively. Furthermore, the investigation into the mechanism revealed the quenching of Fe<sup>3+</sup> can be ascribed to the dual effects of inner filter effect (IFE) and the static quenching. Conversely, the dynamic quenching mechanism has played a predominant role during the sensing process of Cr<sup>3+</sup>.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"339 ","pages":"Article 124988"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of two 3D Ln-MOFs as highly sensitive luminescent sensors for Fe3+ and Cr3+ ions\",\"authors\":\"Shu-Jun Chen , Tong He , Xi-Hui Diao , Yaseen Muhammad , Na Liu , Chao Chen , Hao Wang , Wei Li , Chuan-Song Qi\",\"doi\":\"10.1016/j.jssc.2024.124988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two new isostructural lanthanide(III)−metal organic frameworks (Ln-MOFs), namely [Ln<sub>2</sub>(FDA)<sub>3</sub>(TMS)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·H<sub>2</sub>O (Ln = Eu <strong>1</strong> and Tb <strong>2</strong>, H<sub>2</sub>FDA = 2,5-furandicarboxylic acid, TMS = tetramethylene sulfone), have been synthesized and characterized. Single-crystal X-ray diffraction analysis reveals that both Ln-MOFs exhibit three-dimensional structures crystallizing in the monoclinic <em>C</em>2/<em>c</em> space group. Luminescent sensing studies indicate that <strong>1</strong> and <strong>2</strong> possess commendable capabilities for detecting Fe<sup>3+</sup> and Cr<sup>3+</sup>, with low detection limits of 20.00 nM and 43.41 nM for <strong>1</strong> and 66.10 nM and 0.37 μM for <strong>2</strong>, respectively. Furthermore, the investigation into the mechanism revealed the quenching of Fe<sup>3+</sup> can be ascribed to the dual effects of inner filter effect (IFE) and the static quenching. Conversely, the dynamic quenching mechanism has played a predominant role during the sensing process of Cr<sup>3+</sup>.</p></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"339 \",\"pages\":\"Article 124988\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459624004420\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004420","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Fabrication of two 3D Ln-MOFs as highly sensitive luminescent sensors for Fe3+ and Cr3+ ions
Two new isostructural lanthanide(III)−metal organic frameworks (Ln-MOFs), namely [Ln2(FDA)3(TMS)2(H2O)2]·H2O (Ln = Eu 1 and Tb 2, H2FDA = 2,5-furandicarboxylic acid, TMS = tetramethylene sulfone), have been synthesized and characterized. Single-crystal X-ray diffraction analysis reveals that both Ln-MOFs exhibit three-dimensional structures crystallizing in the monoclinic C2/c space group. Luminescent sensing studies indicate that 1 and 2 possess commendable capabilities for detecting Fe3+ and Cr3+, with low detection limits of 20.00 nM and 43.41 nM for 1 and 66.10 nM and 0.37 μM for 2, respectively. Furthermore, the investigation into the mechanism revealed the quenching of Fe3+ can be ascribed to the dual effects of inner filter effect (IFE) and the static quenching. Conversely, the dynamic quenching mechanism has played a predominant role during the sensing process of Cr3+.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.