{"title":"利用装甲生长网袋评估热带森林中菌根真菌的根外菌丝","authors":"","doi":"10.1016/j.pedobi.2024.150989","DOIUrl":null,"url":null,"abstract":"<div><p>The extraradical mycelium of mycorrhizal fungi is among the major carbon pools in soil that is hard to quantitatively assess in-situ. Established method of in-growth mesh bags in temperate ecosystems is difficult to apply in the tropics, where mesh bags are often damaged by termites. Here we introduce a modification of the in-growth mesh bag technique, in which mesh bags are enforced by stainless steel mesh. Its performance was tested in the Đồng Nai (Cát Tiên) National Park in Vietnam across two monsoon tropical forests, dominated by tree species associated with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Armored in-growth mesh bags remained intact, while about 60 % of non-armored mesh bags were damaged by termites after 180 days of exposure. The biomass of extraradical mycelium of ectomycorrhizal fungi estimated by PLFA analysis was similar in the armored and non-armored mesh bags and did not differ between studied forests. However, fungal community composition slightly differed between armored and non-armored mesh bags in the ECM- but not in the AM-dominated forest. Fungal mycelium gathered in the AM-dominated forest was depleted in <sup>15</sup>N compared to that collected in the ECM-dominated forest. Overall, our results argue for using armored mesh bags as a robust tool for harvesting the biomass of extraradical mycelium of mycorrhizal fungi in tropical ecosystems.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing extraradical mycelium of mycorrhizal fungi in tropical forests using armored in-growth mesh bags\",\"authors\":\"\",\"doi\":\"10.1016/j.pedobi.2024.150989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extraradical mycelium of mycorrhizal fungi is among the major carbon pools in soil that is hard to quantitatively assess in-situ. Established method of in-growth mesh bags in temperate ecosystems is difficult to apply in the tropics, where mesh bags are often damaged by termites. Here we introduce a modification of the in-growth mesh bag technique, in which mesh bags are enforced by stainless steel mesh. Its performance was tested in the Đồng Nai (Cát Tiên) National Park in Vietnam across two monsoon tropical forests, dominated by tree species associated with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Armored in-growth mesh bags remained intact, while about 60 % of non-armored mesh bags were damaged by termites after 180 days of exposure. The biomass of extraradical mycelium of ectomycorrhizal fungi estimated by PLFA analysis was similar in the armored and non-armored mesh bags and did not differ between studied forests. However, fungal community composition slightly differed between armored and non-armored mesh bags in the ECM- but not in the AM-dominated forest. Fungal mycelium gathered in the AM-dominated forest was depleted in <sup>15</sup>N compared to that collected in the ECM-dominated forest. Overall, our results argue for using armored mesh bags as a robust tool for harvesting the biomass of extraradical mycelium of mycorrhizal fungi in tropical ecosystems.</p></div>\",\"PeriodicalId\":49711,\"journal\":{\"name\":\"Pedobiologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedobiologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031405624035108\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624035108","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
菌根真菌的根外菌丝是土壤中的主要碳库之一,但很难对其进行现场定量评估。在温带生态系统中使用的内生长网袋法很难在热带地区使用,因为网袋经常被白蚁破坏。在这里,我们介绍了生长期网袋技术的一种改进方法,即用不锈钢网加强网袋。我们在越南的Đồng Nai (Cát Tiên) 国家公园的两片季风热带雨林中测试了这种技术的性能,这两片雨林以与外生菌根真菌(ECM)或丛生菌根真菌(AM)相关的树种为主。经过 180 天的暴露后,生长期内的装甲网袋仍然完好无损,而约 60% 的非装甲网袋被白蚁破坏。用聚合脂肪酸分析法估算的外生菌根真菌菌丝体生物量在装甲网袋和非装甲网袋中相似,在研究的森林中也没有差异。不过,在以 ECM 为主的森林中,装甲网袋和非装甲网袋的真菌群落组成略有不同,而在以 AM 为主的森林中则没有差异。与在以 ECM 为主的森林中收集的真菌菌丝相比,在以 AM 为主的森林中收集的真菌菌丝的 15N 含量较低。总之,我们的研究结果表明,在热带生态系统中,装甲网袋是采集菌根真菌根外菌丝体生物量的有效工具。
Assessing extraradical mycelium of mycorrhizal fungi in tropical forests using armored in-growth mesh bags
The extraradical mycelium of mycorrhizal fungi is among the major carbon pools in soil that is hard to quantitatively assess in-situ. Established method of in-growth mesh bags in temperate ecosystems is difficult to apply in the tropics, where mesh bags are often damaged by termites. Here we introduce a modification of the in-growth mesh bag technique, in which mesh bags are enforced by stainless steel mesh. Its performance was tested in the Đồng Nai (Cát Tiên) National Park in Vietnam across two monsoon tropical forests, dominated by tree species associated with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Armored in-growth mesh bags remained intact, while about 60 % of non-armored mesh bags were damaged by termites after 180 days of exposure. The biomass of extraradical mycelium of ectomycorrhizal fungi estimated by PLFA analysis was similar in the armored and non-armored mesh bags and did not differ between studied forests. However, fungal community composition slightly differed between armored and non-armored mesh bags in the ECM- but not in the AM-dominated forest. Fungal mycelium gathered in the AM-dominated forest was depleted in 15N compared to that collected in the ECM-dominated forest. Overall, our results argue for using armored mesh bags as a robust tool for harvesting the biomass of extraradical mycelium of mycorrhizal fungi in tropical ecosystems.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.