Maggie Ruble, Nicholas Simpson, Brianna Smith, Wura Adeshina, Emily Snyder, Oné R. Pagán
{"title":"烟碱对高浓度和低浓度尼古丁的影响不同","authors":"Maggie Ruble, Nicholas Simpson, Brianna Smith, Wura Adeshina, Emily Snyder, Oné R. Pagán","doi":"10.1016/j.neulet.2024.137955","DOIUrl":null,"url":null,"abstract":"<div><p>Previous work from our laboratory showed that cotinine, a nicotine metabolite, reverses three nicotine-induced behavioral effects in freshwater planarians: motility decrease, seizure-like movements, and withdrawal-like behaviors. The present work explored whether cotinine, a nicotine metabolite, antagonized the nicotine-induced effects on planarian motility in a concentration-dependent manner. We found that nicotine decreased planarian motility at nicotine concentrations above 60 μM but increased planarian velocity at concentrations equal to or below 50 μM, in agreement with previous data. Cotinine did not affect planarian motility at a concentration range between 250 and 2750 μM. Furthermore, we found that cotinine alleviated the 100 μM nicotine-induced motility decrease in a concentration-dependent manner and reversed the low nicotine concentration motility increase, albeit in a concentration-independent manner. The apparent concentration-dependent alleviation of >60 μM nicotine-induced motility decrease by cotinine suggests an orthosteric relationship between nicotine and cotinine. On the other hand, the evident concentration-independent cotinine alleviation of the increase in motility induced by 50 μM nicotine suggests an allosteric relationship. Our data is consistent with the existing literature about the relationship between nicotine and cotinine in various models, reinforcing the case for the usefulness of the planarian model in pharmacological studies.</p></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"841 ","pages":"Article 137955"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cotinine influences the effect of high and low nicotine concentrations on planarian motility differently\",\"authors\":\"Maggie Ruble, Nicholas Simpson, Brianna Smith, Wura Adeshina, Emily Snyder, Oné R. Pagán\",\"doi\":\"10.1016/j.neulet.2024.137955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previous work from our laboratory showed that cotinine, a nicotine metabolite, reverses three nicotine-induced behavioral effects in freshwater planarians: motility decrease, seizure-like movements, and withdrawal-like behaviors. The present work explored whether cotinine, a nicotine metabolite, antagonized the nicotine-induced effects on planarian motility in a concentration-dependent manner. We found that nicotine decreased planarian motility at nicotine concentrations above 60 μM but increased planarian velocity at concentrations equal to or below 50 μM, in agreement with previous data. Cotinine did not affect planarian motility at a concentration range between 250 and 2750 μM. Furthermore, we found that cotinine alleviated the 100 μM nicotine-induced motility decrease in a concentration-dependent manner and reversed the low nicotine concentration motility increase, albeit in a concentration-independent manner. The apparent concentration-dependent alleviation of >60 μM nicotine-induced motility decrease by cotinine suggests an orthosteric relationship between nicotine and cotinine. On the other hand, the evident concentration-independent cotinine alleviation of the increase in motility induced by 50 μM nicotine suggests an allosteric relationship. Our data is consistent with the existing literature about the relationship between nicotine and cotinine in various models, reinforcing the case for the usefulness of the planarian model in pharmacological studies.</p></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"841 \",\"pages\":\"Article 137955\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394024003331\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024003331","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Cotinine influences the effect of high and low nicotine concentrations on planarian motility differently
Previous work from our laboratory showed that cotinine, a nicotine metabolite, reverses three nicotine-induced behavioral effects in freshwater planarians: motility decrease, seizure-like movements, and withdrawal-like behaviors. The present work explored whether cotinine, a nicotine metabolite, antagonized the nicotine-induced effects on planarian motility in a concentration-dependent manner. We found that nicotine decreased planarian motility at nicotine concentrations above 60 μM but increased planarian velocity at concentrations equal to or below 50 μM, in agreement with previous data. Cotinine did not affect planarian motility at a concentration range between 250 and 2750 μM. Furthermore, we found that cotinine alleviated the 100 μM nicotine-induced motility decrease in a concentration-dependent manner and reversed the low nicotine concentration motility increase, albeit in a concentration-independent manner. The apparent concentration-dependent alleviation of >60 μM nicotine-induced motility decrease by cotinine suggests an orthosteric relationship between nicotine and cotinine. On the other hand, the evident concentration-independent cotinine alleviation of the increase in motility induced by 50 μM nicotine suggests an allosteric relationship. Our data is consistent with the existing literature about the relationship between nicotine and cotinine in various models, reinforcing the case for the usefulness of the planarian model in pharmacological studies.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.