Yuanyuan Yan , Xun Cao , Chongji Wang , Jijian Liu , Longyi Fu , Yang Yang , Tian Wang , Yu Lu , Weifeng Liu , Xuguang Liu , Rongyan Wang , Jiadong Zhou , Meiling Wang
{"title":"用于储能的密闭 PMo6W6","authors":"Yuanyuan Yan , Xun Cao , Chongji Wang , Jijian Liu , Longyi Fu , Yang Yang , Tian Wang , Yu Lu , Weifeng Liu , Xuguang Liu , Rongyan Wang , Jiadong Zhou , Meiling Wang","doi":"10.1016/j.nantod.2024.102476","DOIUrl":null,"url":null,"abstract":"<div><p>Mixed-addenda polyoxometalate (e.g., PMo<sub><em>x</em></sub>W<sub>12-<em>x</em></sub>) by “orbital engineering” allows the functionalization of the single-addenda cluster surface, which offers new electronic properties. However, the well-known agglomeration phenomenon greatly limits the full understanding of its unique redox properties. It makes sense to fully stimulate the intrinsic multi-electron activity of mixed-addenda polyoxometalate by confining engineering to apply in energy technology. With the verification of potential candidate PMo<sub>6</sub>W<sub>6</sub> possessing remarkable stability with fully exposed activity sites in a confined state by theoretical analysis, we achieve the precise confinement of the single PMo<sub>6</sub>W<sub>6</sub> molecule in porous carbon (PC) with a matched pore aperture (PMo<sub>6</sub>W<sub>6</sub>@PC). As a result, PMo<sub>6</sub>W<sub>6</sub>@PC-based supercapacitor shows high energy densities of 0.308 mWh cm<sup>−2</sup> at power densities of 43.2 mW cm<sup>−2</sup>, outperforming most polyoxometalate-based supercapacitors. Moreover, the device exhibits a capacity retention of over 80.4 % at 8 mA cm<sup>−2</sup> after 8000 cycles. This improved electrochemical redox activity may be ascribed to the strong orbital electronic coupling between W and Mo atoms of PMo<sub>6</sub>W<sub>6</sub> by confinement engineering. This work proves that the confined PMo<sub>6</sub>W<sub>6</sub> can maximize the advantages of PMo<sub>12</sub>O<sub>40</sub> and PW<sub>12</sub>O<sub>40</sub>, which provides a theoretical basis for other mixed-addenda polyoxometalate species.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102476"},"PeriodicalIF":13.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confined PMo6W6 for energy storage\",\"authors\":\"Yuanyuan Yan , Xun Cao , Chongji Wang , Jijian Liu , Longyi Fu , Yang Yang , Tian Wang , Yu Lu , Weifeng Liu , Xuguang Liu , Rongyan Wang , Jiadong Zhou , Meiling Wang\",\"doi\":\"10.1016/j.nantod.2024.102476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mixed-addenda polyoxometalate (e.g., PMo<sub><em>x</em></sub>W<sub>12-<em>x</em></sub>) by “orbital engineering” allows the functionalization of the single-addenda cluster surface, which offers new electronic properties. However, the well-known agglomeration phenomenon greatly limits the full understanding of its unique redox properties. It makes sense to fully stimulate the intrinsic multi-electron activity of mixed-addenda polyoxometalate by confining engineering to apply in energy technology. With the verification of potential candidate PMo<sub>6</sub>W<sub>6</sub> possessing remarkable stability with fully exposed activity sites in a confined state by theoretical analysis, we achieve the precise confinement of the single PMo<sub>6</sub>W<sub>6</sub> molecule in porous carbon (PC) with a matched pore aperture (PMo<sub>6</sub>W<sub>6</sub>@PC). As a result, PMo<sub>6</sub>W<sub>6</sub>@PC-based supercapacitor shows high energy densities of 0.308 mWh cm<sup>−2</sup> at power densities of 43.2 mW cm<sup>−2</sup>, outperforming most polyoxometalate-based supercapacitors. Moreover, the device exhibits a capacity retention of over 80.4 % at 8 mA cm<sup>−2</sup> after 8000 cycles. This improved electrochemical redox activity may be ascribed to the strong orbital electronic coupling between W and Mo atoms of PMo<sub>6</sub>W<sub>6</sub> by confinement engineering. This work proves that the confined PMo<sub>6</sub>W<sub>6</sub> can maximize the advantages of PMo<sub>12</sub>O<sub>40</sub> and PW<sub>12</sub>O<sub>40</sub>, which provides a theoretical basis for other mixed-addenda polyoxometalate species.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"59 \",\"pages\":\"Article 102476\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003323\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003323","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mixed-addenda polyoxometalate (e.g., PMoxW12-x) by “orbital engineering” allows the functionalization of the single-addenda cluster surface, which offers new electronic properties. However, the well-known agglomeration phenomenon greatly limits the full understanding of its unique redox properties. It makes sense to fully stimulate the intrinsic multi-electron activity of mixed-addenda polyoxometalate by confining engineering to apply in energy technology. With the verification of potential candidate PMo6W6 possessing remarkable stability with fully exposed activity sites in a confined state by theoretical analysis, we achieve the precise confinement of the single PMo6W6 molecule in porous carbon (PC) with a matched pore aperture (PMo6W6@PC). As a result, PMo6W6@PC-based supercapacitor shows high energy densities of 0.308 mWh cm−2 at power densities of 43.2 mW cm−2, outperforming most polyoxometalate-based supercapacitors. Moreover, the device exhibits a capacity retention of over 80.4 % at 8 mA cm−2 after 8000 cycles. This improved electrochemical redox activity may be ascribed to the strong orbital electronic coupling between W and Mo atoms of PMo6W6 by confinement engineering. This work proves that the confined PMo6W6 can maximize the advantages of PMo12O40 and PW12O40, which provides a theoretical basis for other mixed-addenda polyoxometalate species.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.