{"title":"具有相关信念下最优学习能力的顺序过境网络设计算法","authors":"","doi":"10.1016/j.tre.2024.103707","DOIUrl":null,"url":null,"abstract":"<div><p>Mobility service route design requires demand information to operate in a service region. Transit planners and operators can access various data sources including household travel survey data and mobile device location logs. However, when implementing a mobility system with emerging technologies, estimating demand becomes harder because of limited data resulting in uncertainty. This study proposes an artificial intelligence-driven algorithm that combines sequential transit network design with optimal learning to address the operation under limited data. An operator gradually expands its route system to avoid risks from inconsistency between designed routes and actual travel demand. At the same time, observed information is archived to update the knowledge that the operator currently uses. Three learning policies are compared within the algorithm: multi-armed bandit, knowledge gradient, and knowledge gradient with correlated beliefs. For validation, a new route system is designed on an artificial network based on public use microdata areas in New York City. Prior knowledge is reproduced from the regional household travel survey data. The results suggest that exploration considering correlations can achieve better performance compared to greedy choices and other independent belief-based techniques in general. In future work, the problem may incorporate more complexities such as demand elasticity to travel time, no limitations to the number of transfers, and costs for expansion.</p></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1366554524002989/pdfft?md5=f6d7432e89633433bd3b6427c7fb95c0&pid=1-s2.0-S1366554524002989-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A sequential transit network design algorithm with optimal learning under correlated beliefs\",\"authors\":\"\",\"doi\":\"10.1016/j.tre.2024.103707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mobility service route design requires demand information to operate in a service region. Transit planners and operators can access various data sources including household travel survey data and mobile device location logs. However, when implementing a mobility system with emerging technologies, estimating demand becomes harder because of limited data resulting in uncertainty. This study proposes an artificial intelligence-driven algorithm that combines sequential transit network design with optimal learning to address the operation under limited data. An operator gradually expands its route system to avoid risks from inconsistency between designed routes and actual travel demand. At the same time, observed information is archived to update the knowledge that the operator currently uses. Three learning policies are compared within the algorithm: multi-armed bandit, knowledge gradient, and knowledge gradient with correlated beliefs. For validation, a new route system is designed on an artificial network based on public use microdata areas in New York City. Prior knowledge is reproduced from the regional household travel survey data. The results suggest that exploration considering correlations can achieve better performance compared to greedy choices and other independent belief-based techniques in general. In future work, the problem may incorporate more complexities such as demand elasticity to travel time, no limitations to the number of transfers, and costs for expansion.</p></div>\",\"PeriodicalId\":49418,\"journal\":{\"name\":\"Transportation Research Part E-Logistics and Transportation Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1366554524002989/pdfft?md5=f6d7432e89633433bd3b6427c7fb95c0&pid=1-s2.0-S1366554524002989-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part E-Logistics and Transportation Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1366554524002989\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524002989","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
A sequential transit network design algorithm with optimal learning under correlated beliefs
Mobility service route design requires demand information to operate in a service region. Transit planners and operators can access various data sources including household travel survey data and mobile device location logs. However, when implementing a mobility system with emerging technologies, estimating demand becomes harder because of limited data resulting in uncertainty. This study proposes an artificial intelligence-driven algorithm that combines sequential transit network design with optimal learning to address the operation under limited data. An operator gradually expands its route system to avoid risks from inconsistency between designed routes and actual travel demand. At the same time, observed information is archived to update the knowledge that the operator currently uses. Three learning policies are compared within the algorithm: multi-armed bandit, knowledge gradient, and knowledge gradient with correlated beliefs. For validation, a new route system is designed on an artificial network based on public use microdata areas in New York City. Prior knowledge is reproduced from the regional household travel survey data. The results suggest that exploration considering correlations can achieve better performance compared to greedy choices and other independent belief-based techniques in general. In future work, the problem may incorporate more complexities such as demand elasticity to travel time, no limitations to the number of transfers, and costs for expansion.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.