非线性柔性机械超材料中的包络矢量孤子

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
A. Demiquel, V. Achilleos, G. Theocharis, V. Tournat
{"title":"非线性柔性机械超材料中的包络矢量孤子","authors":"A. Demiquel,&nbsp;V. Achilleos,&nbsp;G. Theocharis,&nbsp;V. Tournat","doi":"10.1016/j.wavemoti.2024.103394","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we employ a combination of analytical and numerical techniques to investigate the dynamics of lattice envelope vector soliton solutions propagating within a one-dimensional chain of flexible mechanical metamaterial. To model the system, we formulate discrete equations that describe the longitudinal and rotational displacements of each individual rigid unit mass using a lump element approach. By applying the multiple-scales method in the context of a semi-discrete approximation, we derive an effective nonlinear Schrödinger equation that characterizes the evolution of rotational and slowly varying envelope waves from the aforementioned discrete motion equations. We thus show that this flexible mechanical metamaterial chain supports envelope vector solitons where the rotational component has the form of either a bright or a dark soliton. In addition, due to nonlinear coupling, the longitudinal displacement displays kink-like profiles thus forming the 2-components vector soliton. These findings, which include specific vector envelope solutions, enrich our knowledge on the nonlinear wave solutions supported by flexible mechanical metamaterials and open new possibilities for the control of nonlinear waves and vibrations.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103394"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envelope vector solitons in nonlinear flexible mechanical metamaterials\",\"authors\":\"A. Demiquel,&nbsp;V. Achilleos,&nbsp;G. Theocharis,&nbsp;V. Tournat\",\"doi\":\"10.1016/j.wavemoti.2024.103394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we employ a combination of analytical and numerical techniques to investigate the dynamics of lattice envelope vector soliton solutions propagating within a one-dimensional chain of flexible mechanical metamaterial. To model the system, we formulate discrete equations that describe the longitudinal and rotational displacements of each individual rigid unit mass using a lump element approach. By applying the multiple-scales method in the context of a semi-discrete approximation, we derive an effective nonlinear Schrödinger equation that characterizes the evolution of rotational and slowly varying envelope waves from the aforementioned discrete motion equations. We thus show that this flexible mechanical metamaterial chain supports envelope vector solitons where the rotational component has the form of either a bright or a dark soliton. In addition, due to nonlinear coupling, the longitudinal displacement displays kink-like profiles thus forming the 2-components vector soliton. These findings, which include specific vector envelope solutions, enrich our knowledge on the nonlinear wave solutions supported by flexible mechanical metamaterials and open new possibilities for the control of nonlinear waves and vibrations.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"131 \",\"pages\":\"Article 103394\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001240\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001240","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们采用分析和数值技术相结合的方法,研究了在一维柔性机械超材料链中传播的晶格包络矢量孤子解的动力学。为了对系统进行建模,我们使用块元方法制定了离散方程,用于描述每个独立刚性单元质量的纵向和旋转位移。通过在半离散近似背景下应用多尺度方法,我们从上述离散运动方程中推导出一个有效的非线性薛定谔方程,该方程描述了旋转波和缓慢变化的包络波的演化过程。因此,我们证明这种柔性机械超材料链支持包络矢量孤子,其中的旋转成分具有明孤子或暗孤子的形式。此外,由于非线性耦合,纵向位移显示出类似 "Kink "的曲线,从而形成了双分量矢量孤子。这些发现包括特定的矢量包络解,丰富了我们对柔性机械超材料支持的非线性波解的认识,为控制非线性波和振动开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Envelope vector solitons in nonlinear flexible mechanical metamaterials

In this paper, we employ a combination of analytical and numerical techniques to investigate the dynamics of lattice envelope vector soliton solutions propagating within a one-dimensional chain of flexible mechanical metamaterial. To model the system, we formulate discrete equations that describe the longitudinal and rotational displacements of each individual rigid unit mass using a lump element approach. By applying the multiple-scales method in the context of a semi-discrete approximation, we derive an effective nonlinear Schrödinger equation that characterizes the evolution of rotational and slowly varying envelope waves from the aforementioned discrete motion equations. We thus show that this flexible mechanical metamaterial chain supports envelope vector solitons where the rotational component has the form of either a bright or a dark soliton. In addition, due to nonlinear coupling, the longitudinal displacement displays kink-like profiles thus forming the 2-components vector soliton. These findings, which include specific vector envelope solutions, enrich our knowledge on the nonlinear wave solutions supported by flexible mechanical metamaterials and open new possibilities for the control of nonlinear waves and vibrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信