A. Demiquel, V. Achilleos, G. Theocharis, V. Tournat
{"title":"非线性柔性机械超材料中的包络矢量孤子","authors":"A. Demiquel, V. Achilleos, G. Theocharis, V. Tournat","doi":"10.1016/j.wavemoti.2024.103394","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we employ a combination of analytical and numerical techniques to investigate the dynamics of lattice envelope vector soliton solutions propagating within a one-dimensional chain of flexible mechanical metamaterial. To model the system, we formulate discrete equations that describe the longitudinal and rotational displacements of each individual rigid unit mass using a lump element approach. By applying the multiple-scales method in the context of a semi-discrete approximation, we derive an effective nonlinear Schrödinger equation that characterizes the evolution of rotational and slowly varying envelope waves from the aforementioned discrete motion equations. We thus show that this flexible mechanical metamaterial chain supports envelope vector solitons where the rotational component has the form of either a bright or a dark soliton. In addition, due to nonlinear coupling, the longitudinal displacement displays kink-like profiles thus forming the 2-components vector soliton. These findings, which include specific vector envelope solutions, enrich our knowledge on the nonlinear wave solutions supported by flexible mechanical metamaterials and open new possibilities for the control of nonlinear waves and vibrations.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103394"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envelope vector solitons in nonlinear flexible mechanical metamaterials\",\"authors\":\"A. Demiquel, V. Achilleos, G. Theocharis, V. Tournat\",\"doi\":\"10.1016/j.wavemoti.2024.103394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we employ a combination of analytical and numerical techniques to investigate the dynamics of lattice envelope vector soliton solutions propagating within a one-dimensional chain of flexible mechanical metamaterial. To model the system, we formulate discrete equations that describe the longitudinal and rotational displacements of each individual rigid unit mass using a lump element approach. By applying the multiple-scales method in the context of a semi-discrete approximation, we derive an effective nonlinear Schrödinger equation that characterizes the evolution of rotational and slowly varying envelope waves from the aforementioned discrete motion equations. We thus show that this flexible mechanical metamaterial chain supports envelope vector solitons where the rotational component has the form of either a bright or a dark soliton. In addition, due to nonlinear coupling, the longitudinal displacement displays kink-like profiles thus forming the 2-components vector soliton. These findings, which include specific vector envelope solutions, enrich our knowledge on the nonlinear wave solutions supported by flexible mechanical metamaterials and open new possibilities for the control of nonlinear waves and vibrations.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"131 \",\"pages\":\"Article 103394\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001240\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001240","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Envelope vector solitons in nonlinear flexible mechanical metamaterials
In this paper, we employ a combination of analytical and numerical techniques to investigate the dynamics of lattice envelope vector soliton solutions propagating within a one-dimensional chain of flexible mechanical metamaterial. To model the system, we formulate discrete equations that describe the longitudinal and rotational displacements of each individual rigid unit mass using a lump element approach. By applying the multiple-scales method in the context of a semi-discrete approximation, we derive an effective nonlinear Schrödinger equation that characterizes the evolution of rotational and slowly varying envelope waves from the aforementioned discrete motion equations. We thus show that this flexible mechanical metamaterial chain supports envelope vector solitons where the rotational component has the form of either a bright or a dark soliton. In addition, due to nonlinear coupling, the longitudinal displacement displays kink-like profiles thus forming the 2-components vector soliton. These findings, which include specific vector envelope solutions, enrich our knowledge on the nonlinear wave solutions supported by flexible mechanical metamaterials and open new possibilities for the control of nonlinear waves and vibrations.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.