超参数优化下的多模块融合光伏阵列故障诊断

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
{"title":"超参数优化下的多模块融合光伏阵列故障诊断","authors":"","doi":"10.1016/j.enconman.2024.118974","DOIUrl":null,"url":null,"abstract":"<div><p>Photovoltaic (PV) arrays’ random and intermittent output characteristics impact power system safety. To improve the performance of the PV array fault diagnosis model, a novel online fault monitoring technique is introduced. (1) Fault diagnostic model construction: Significant differences in PV arrays’ I-V and P-V curves under various fault conditions led to constructing a 3D channel feature map based on I, V, and P features. (2) Multi-source information fusion network (MSIFN): this multi-module fusion model includes a time–frequency domain fusion module (TDFM), a multi-feature shuffle expansion convolution module (MSECM), a parameter-free parallel hybrid attention enhancement module, and a multi-scale mixed pooling fusion classification module (MMPCM). (3) Multi-strategy fusion whale optimization algorithm (MSFWOA): addressing the original WOA’s deficiencies, we designed time control, parameter modification, and greedy control strategies based on lens imaging to optimize MSIFN’s hyper-parameters. Experimental results show that the MSFWOA-MSIFN model excels in PV array fault diagnosis (<span><math><msub><mi>P</mi><mrow><mi>accuracy</mi></mrow></msub></math></span>=<span><math><msub><mi>P</mi><mrow><mi>precision</mi></mrow></msub></math></span>=<span><math><msub><mi>P</mi><mrow><mi>recall</mi></mrow></msub></math></span> = 99.92 %). In three types of noise experiments with 15 dB, 25 dB, and 30 dB, the average performance index remained above 99 %. In practical experiments, the average performance indices were<span><math><msub><mi>P</mi><mrow><mi>accuracy</mi></mrow></msub></math></span> = 97.53 %, <span><math><msub><mi>P</mi><mrow><mi>precision</mi></mrow></msub></math></span> = 97.32 %, and<span><math><msub><mi>P</mi><mrow><mi>recall</mi></mrow></msub></math></span> = 97.41 %, further demonstrating its excellent diagnostic performance. This model effectively diagnoses various faults in PV arrays, providing scientific and theoretical support for PV system operations.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis of photovoltaic array with multi-module fusion under hyperparameter optimization\",\"authors\":\"\",\"doi\":\"10.1016/j.enconman.2024.118974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photovoltaic (PV) arrays’ random and intermittent output characteristics impact power system safety. To improve the performance of the PV array fault diagnosis model, a novel online fault monitoring technique is introduced. (1) Fault diagnostic model construction: Significant differences in PV arrays’ I-V and P-V curves under various fault conditions led to constructing a 3D channel feature map based on I, V, and P features. (2) Multi-source information fusion network (MSIFN): this multi-module fusion model includes a time–frequency domain fusion module (TDFM), a multi-feature shuffle expansion convolution module (MSECM), a parameter-free parallel hybrid attention enhancement module, and a multi-scale mixed pooling fusion classification module (MMPCM). (3) Multi-strategy fusion whale optimization algorithm (MSFWOA): addressing the original WOA’s deficiencies, we designed time control, parameter modification, and greedy control strategies based on lens imaging to optimize MSIFN’s hyper-parameters. Experimental results show that the MSFWOA-MSIFN model excels in PV array fault diagnosis (<span><math><msub><mi>P</mi><mrow><mi>accuracy</mi></mrow></msub></math></span>=<span><math><msub><mi>P</mi><mrow><mi>precision</mi></mrow></msub></math></span>=<span><math><msub><mi>P</mi><mrow><mi>recall</mi></mrow></msub></math></span> = 99.92 %). In three types of noise experiments with 15 dB, 25 dB, and 30 dB, the average performance index remained above 99 %. In practical experiments, the average performance indices were<span><math><msub><mi>P</mi><mrow><mi>accuracy</mi></mrow></msub></math></span> = 97.53 %, <span><math><msub><mi>P</mi><mrow><mi>precision</mi></mrow></msub></math></span> = 97.32 %, and<span><math><msub><mi>P</mi><mrow><mi>recall</mi></mrow></msub></math></span> = 97.41 %, further demonstrating its excellent diagnostic performance. This model effectively diagnoses various faults in PV arrays, providing scientific and theoretical support for PV system operations.</p></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424009154\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424009154","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)阵列的随机和间歇性输出特性会影响电力系统的安全性。为了提高光伏阵列故障诊断模型的性能,本文引入了一种新型的在线故障监测技术。(1) 故障诊断模型的构建:光伏阵列在各种故障条件下的 I-V 和 P-V 曲线存在显著差异,因此需要构建基于 I、V 和 P 特征的三维通道特征图。(2) 多源信息融合网络(MSIFN):该多模块融合模型包括时频域融合模块(TDFM)、多特征洗牌扩展卷积模块(MSECM)、无参数并行混合注意力增强模块和多尺度混合池化融合分类模块(MMPCM)。(3) 多策略融合鲸鱼优化算法(MSFWOA):针对原 WOA 的不足,我们设计了基于镜头成像的时间控制、参数修改和贪婪控制策略,以优化 MSIFN 的超参数。实验结果表明,MSFWOA-MSIFN 模型在光伏阵列故障诊断方面表现出色(准确率=精确率=召回率=99.92%)。在 15 dB、25 dB 和 30 dB 三种噪声实验中,平均性能指标均保持在 99 % 以上。在实际实验中,平均性能指标分别为准确率 = 97.53 %、精确率 = 97.32 % 和召回率 = 97.41 %,进一步证明了其卓越的诊断性能。该模型能有效诊断光伏阵列中的各种故障,为光伏系统的运行提供了科学理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis of photovoltaic array with multi-module fusion under hyperparameter optimization

Photovoltaic (PV) arrays’ random and intermittent output characteristics impact power system safety. To improve the performance of the PV array fault diagnosis model, a novel online fault monitoring technique is introduced. (1) Fault diagnostic model construction: Significant differences in PV arrays’ I-V and P-V curves under various fault conditions led to constructing a 3D channel feature map based on I, V, and P features. (2) Multi-source information fusion network (MSIFN): this multi-module fusion model includes a time–frequency domain fusion module (TDFM), a multi-feature shuffle expansion convolution module (MSECM), a parameter-free parallel hybrid attention enhancement module, and a multi-scale mixed pooling fusion classification module (MMPCM). (3) Multi-strategy fusion whale optimization algorithm (MSFWOA): addressing the original WOA’s deficiencies, we designed time control, parameter modification, and greedy control strategies based on lens imaging to optimize MSIFN’s hyper-parameters. Experimental results show that the MSFWOA-MSIFN model excels in PV array fault diagnosis (Paccuracy=Pprecision=Precall = 99.92 %). In three types of noise experiments with 15 dB, 25 dB, and 30 dB, the average performance index remained above 99 %. In practical experiments, the average performance indices werePaccuracy = 97.53 %, Pprecision = 97.32 %, andPrecall = 97.41 %, further demonstrating its excellent diagnostic performance. This model effectively diagnoses various faults in PV arrays, providing scientific and theoretical support for PV system operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信