{"title":"添加准二维包晶作为三维包晶层封盖层的 4T 包晶-钙钛矿串联太阳能电池的光电研究","authors":"","doi":"10.1016/j.enconman.2024.118991","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a four-terminal (4T) perovskite-chalcogenide tandem solar cell (TSC) that includes quasi-2D perovskite material in the top sub-cell in order to provide a stable structure, and the bottom sub-cell contains Zn(O,S,OH) material to provide a nontoxic buffer layer. First, a reference TSC with a total power conversion efficiency (PCE) of 26.48% is modeled, using <span><math><mrow><mi>MA</mi><msub><mrow><mi>PbI</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and CIGSSe as 3D perovskite and chalcogenide absorber layers (ALs), respectively. Next, two structures are designed to produce a stable SC using the Ruddlesden Popper (RP) quasi-2D perovskite materials, which have the chemical formula <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mi>m</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>3</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mi>m</mi></math></span> = 2–5. The initial structure uses quasi-2D perovskites in place of the 3D perovskite AL. According to the results, <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>MA</mi><msub><mrow><mi>Pb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>7</mn></mrow></msub></mrow></math></span> represents the maximum PCE of 16.00%, 10.48% less than previously. This is caused by quasi-2D materials’ high Eg and low carrier mobility. In the second structure, 3D perovskite AL is capped with the quasi-2D perovskites. In terms of attaining maximum PCE, the optimal TSC is found for <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>13</mn></mrow></msub></mrow></math></span> with a PCE of 25.80%. Compared to the initial structure, this one’s PCE increased by 61.25%. In order to boost PCE, a 80 nm-thick anti-reflection (AR) layer is added to the second structure, and the PCE increased to 27.48%. Therefore, the final TSC is proposed as a 4T quasi-2D/3D perovskite-chalcogenide TSC that is stable, and has nontoxic buffer layer, with 3.78% more PCE than the reference structure.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opto-electrical study of 4T perovskite-chalcogenide tandem solar cell with the addition of quasi-2D perovskite as capping layer of 3D perovskite layer\",\"authors\":\"\",\"doi\":\"10.1016/j.enconman.2024.118991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a four-terminal (4T) perovskite-chalcogenide tandem solar cell (TSC) that includes quasi-2D perovskite material in the top sub-cell in order to provide a stable structure, and the bottom sub-cell contains Zn(O,S,OH) material to provide a nontoxic buffer layer. First, a reference TSC with a total power conversion efficiency (PCE) of 26.48% is modeled, using <span><math><mrow><mi>MA</mi><msub><mrow><mi>PbI</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and CIGSSe as 3D perovskite and chalcogenide absorber layers (ALs), respectively. Next, two structures are designed to produce a stable SC using the Ruddlesden Popper (RP) quasi-2D perovskite materials, which have the chemical formula <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mi>m</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>3</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mi>m</mi></math></span> = 2–5. The initial structure uses quasi-2D perovskites in place of the 3D perovskite AL. According to the results, <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>MA</mi><msub><mrow><mi>Pb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>7</mn></mrow></msub></mrow></math></span> represents the maximum PCE of 16.00%, 10.48% less than previously. This is caused by quasi-2D materials’ high Eg and low carrier mobility. In the second structure, 3D perovskite AL is capped with the quasi-2D perovskites. In terms of attaining maximum PCE, the optimal TSC is found for <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>13</mn></mrow></msub></mrow></math></span> with a PCE of 25.80%. Compared to the initial structure, this one’s PCE increased by 61.25%. In order to boost PCE, a 80 nm-thick anti-reflection (AR) layer is added to the second structure, and the PCE increased to 27.48%. Therefore, the final TSC is proposed as a 4T quasi-2D/3D perovskite-chalcogenide TSC that is stable, and has nontoxic buffer layer, with 3.78% more PCE than the reference structure.</p></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424009324\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424009324","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Opto-electrical study of 4T perovskite-chalcogenide tandem solar cell with the addition of quasi-2D perovskite as capping layer of 3D perovskite layer
This study presents a four-terminal (4T) perovskite-chalcogenide tandem solar cell (TSC) that includes quasi-2D perovskite material in the top sub-cell in order to provide a stable structure, and the bottom sub-cell contains Zn(O,S,OH) material to provide a nontoxic buffer layer. First, a reference TSC with a total power conversion efficiency (PCE) of 26.48% is modeled, using and CIGSSe as 3D perovskite and chalcogenide absorber layers (ALs), respectively. Next, two structures are designed to produce a stable SC using the Ruddlesden Popper (RP) quasi-2D perovskite materials, which have the chemical formula , = 2–5. The initial structure uses quasi-2D perovskites in place of the 3D perovskite AL. According to the results, represents the maximum PCE of 16.00%, 10.48% less than previously. This is caused by quasi-2D materials’ high Eg and low carrier mobility. In the second structure, 3D perovskite AL is capped with the quasi-2D perovskites. In terms of attaining maximum PCE, the optimal TSC is found for with a PCE of 25.80%. Compared to the initial structure, this one’s PCE increased by 61.25%. In order to boost PCE, a 80 nm-thick anti-reflection (AR) layer is added to the second structure, and the PCE increased to 27.48%. Therefore, the final TSC is proposed as a 4T quasi-2D/3D perovskite-chalcogenide TSC that is stable, and has nontoxic buffer layer, with 3.78% more PCE than the reference structure.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.