添加准二维包晶作为三维包晶层封盖层的 4T 包晶-钙钛矿串联太阳能电池的光电研究

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
{"title":"添加准二维包晶作为三维包晶层封盖层的 4T 包晶-钙钛矿串联太阳能电池的光电研究","authors":"","doi":"10.1016/j.enconman.2024.118991","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a four-terminal (4T) perovskite-chalcogenide tandem solar cell (TSC) that includes quasi-2D perovskite material in the top sub-cell in order to provide a stable structure, and the bottom sub-cell contains Zn(O,S,OH) material to provide a nontoxic buffer layer. First, a reference TSC with a total power conversion efficiency (PCE) of 26.48% is modeled, using <span><math><mrow><mi>MA</mi><msub><mrow><mi>PbI</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and CIGSSe as 3D perovskite and chalcogenide absorber layers (ALs), respectively. Next, two structures are designed to produce a stable SC using the Ruddlesden Popper (RP) quasi-2D perovskite materials, which have the chemical formula <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mi>m</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>3</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mi>m</mi></math></span> = 2–5. The initial structure uses quasi-2D perovskites in place of the 3D perovskite AL. According to the results, <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>MA</mi><msub><mrow><mi>Pb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>7</mn></mrow></msub></mrow></math></span> represents the maximum PCE of 16.00%, 10.48% less than previously. This is caused by quasi-2D materials’ high Eg and low carrier mobility. In the second structure, 3D perovskite AL is capped with the quasi-2D perovskites. In terms of attaining maximum PCE, the optimal TSC is found for <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>13</mn></mrow></msub></mrow></math></span> with a PCE of 25.80%. Compared to the initial structure, this one’s PCE increased by 61.25%. In order to boost PCE, a 80 nm-thick anti-reflection (AR) layer is added to the second structure, and the PCE increased to 27.48%. Therefore, the final TSC is proposed as a 4T quasi-2D/3D perovskite-chalcogenide TSC that is stable, and has nontoxic buffer layer, with 3.78% more PCE than the reference structure.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opto-electrical study of 4T perovskite-chalcogenide tandem solar cell with the addition of quasi-2D perovskite as capping layer of 3D perovskite layer\",\"authors\":\"\",\"doi\":\"10.1016/j.enconman.2024.118991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a four-terminal (4T) perovskite-chalcogenide tandem solar cell (TSC) that includes quasi-2D perovskite material in the top sub-cell in order to provide a stable structure, and the bottom sub-cell contains Zn(O,S,OH) material to provide a nontoxic buffer layer. First, a reference TSC with a total power conversion efficiency (PCE) of 26.48% is modeled, using <span><math><mrow><mi>MA</mi><msub><mrow><mi>PbI</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and CIGSSe as 3D perovskite and chalcogenide absorber layers (ALs), respectively. Next, two structures are designed to produce a stable SC using the Ruddlesden Popper (RP) quasi-2D perovskite materials, which have the chemical formula <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mi>m</mi></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>3</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mi>m</mi></math></span> = 2–5. The initial structure uses quasi-2D perovskites in place of the 3D perovskite AL. According to the results, <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>MA</mi><msub><mrow><mi>Pb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>7</mn></mrow></msub></mrow></math></span> represents the maximum PCE of 16.00%, 10.48% less than previously. This is caused by quasi-2D materials’ high Eg and low carrier mobility. In the second structure, 3D perovskite AL is capped with the quasi-2D perovskites. In terms of attaining maximum PCE, the optimal TSC is found for <span><math><mrow><msub><mrow><mi>BA</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>MA</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>Pb</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>I</mi></mrow><mrow><mn>13</mn></mrow></msub></mrow></math></span> with a PCE of 25.80%. Compared to the initial structure, this one’s PCE increased by 61.25%. In order to boost PCE, a 80 nm-thick anti-reflection (AR) layer is added to the second structure, and the PCE increased to 27.48%. Therefore, the final TSC is proposed as a 4T quasi-2D/3D perovskite-chalcogenide TSC that is stable, and has nontoxic buffer layer, with 3.78% more PCE than the reference structure.</p></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424009324\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424009324","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种四端子(4T)透镜-叠层石串联太阳能电池(TSC),其顶部子电池包含准二维透镜材料以提供稳定的结构,底部子电池包含 Zn(O,S,OH)材料以提供无毒缓冲层。首先,对总功率转换效率(PCE)为 26.48% 的参考 TSC 进行建模,将 MAPbI3 和 CIGSSe 分别用作三维包晶吸收层(AL)和钙钛矿吸收层(AL)。接下来,我们设计了两种结构,使用 Ruddlesden Popper (RP) 准二维包晶材料(化学式为 BA2MAm-1PbmI3m+1,m = 2-5)来生产稳定的 SC。初始结构使用准二维包晶代替三维包晶 AL。结果表明,BA2MAPb2I7 的最大 PCE 为 16.00%,比以前低 10.48%。这是准二维材料的高电容和低载流子迁移率造成的。在第二种结构中,三维过氧化物 AL 被准二维过氧化物覆盖。在获得最大 PCE 方面,BA2MA3Pb4I13 的最佳 TSC 为 25.80%。与初始结构相比,该结构的 PCE 增加了 61.25%。为了提高 PCE,在第二种结构中添加了 80 nm 厚的抗反射(AR)层,PCE 提高到 27.48%。因此,最终提出了一种 4T 准二维/三维过氧化物-钙钛矿 TSC,它具有稳定性和无毒缓冲层,PCE 比参考结构高出 3.78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opto-electrical study of 4T perovskite-chalcogenide tandem solar cell with the addition of quasi-2D perovskite as capping layer of 3D perovskite layer

This study presents a four-terminal (4T) perovskite-chalcogenide tandem solar cell (TSC) that includes quasi-2D perovskite material in the top sub-cell in order to provide a stable structure, and the bottom sub-cell contains Zn(O,S,OH) material to provide a nontoxic buffer layer. First, a reference TSC with a total power conversion efficiency (PCE) of 26.48% is modeled, using MAPbI3 and CIGSSe as 3D perovskite and chalcogenide absorber layers (ALs), respectively. Next, two structures are designed to produce a stable SC using the Ruddlesden Popper (RP) quasi-2D perovskite materials, which have the chemical formula BA2MAm1PbmI3m+1, m = 2–5. The initial structure uses quasi-2D perovskites in place of the 3D perovskite AL. According to the results, BA2MAPb2I7 represents the maximum PCE of 16.00%, 10.48% less than previously. This is caused by quasi-2D materials’ high Eg and low carrier mobility. In the second structure, 3D perovskite AL is capped with the quasi-2D perovskites. In terms of attaining maximum PCE, the optimal TSC is found for BA2MA3Pb4I13 with a PCE of 25.80%. Compared to the initial structure, this one’s PCE increased by 61.25%. In order to boost PCE, a 80 nm-thick anti-reflection (AR) layer is added to the second structure, and the PCE increased to 27.48%. Therefore, the final TSC is proposed as a 4T quasi-2D/3D perovskite-chalcogenide TSC that is stable, and has nontoxic buffer layer, with 3.78% more PCE than the reference structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信