结合预测的条件最优权重和前瞻性方法

IF 6.9 2区 经济学 Q1 ECONOMICS
Christopher G. Gibbs, Andrey L. Vasnev
{"title":"结合预测的条件最优权重和前瞻性方法","authors":"Christopher G. Gibbs,&nbsp;Andrey L. Vasnev","doi":"10.1016/j.ijforecast.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>In forecasting, there is a tradeoff between in-sample fit and out-of-sample forecast accuracy. Parsimonious model specifications typically outperform richer model specifications. Consequently, information is often withheld from a forecast to prevent over-fitting the data. We show that one way to exploit this information is through forecast combination. Optimal combination weights in this environment minimize the conditional mean squared error that balances the conditional bias and the conditional variance of the combination. The bias-adjusted conditionally optimal forecast weights are time varying and forward looking. Real-time tests of conditionally optimal combinations of model-based forecasts and surveys of professional forecasters show significant gains in forecast accuracy relative to standard benchmarks for inflation and other macroeconomic variables.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1734-1751"},"PeriodicalIF":6.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702400027X/pdfft?md5=a9a2fe1ffd1994772550f8bd88d4ead2&pid=1-s2.0-S016920702400027X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Conditionally optimal weights and forward-looking approaches to combining forecasts\",\"authors\":\"Christopher G. Gibbs,&nbsp;Andrey L. Vasnev\",\"doi\":\"10.1016/j.ijforecast.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In forecasting, there is a tradeoff between in-sample fit and out-of-sample forecast accuracy. Parsimonious model specifications typically outperform richer model specifications. Consequently, information is often withheld from a forecast to prevent over-fitting the data. We show that one way to exploit this information is through forecast combination. Optimal combination weights in this environment minimize the conditional mean squared error that balances the conditional bias and the conditional variance of the combination. The bias-adjusted conditionally optimal forecast weights are time varying and forward looking. Real-time tests of conditionally optimal combinations of model-based forecasts and surveys of professional forecasters show significant gains in forecast accuracy relative to standard benchmarks for inflation and other macroeconomic variables.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"40 4\",\"pages\":\"Pages 1734-1751\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016920702400027X/pdfft?md5=a9a2fe1ffd1994772550f8bd88d4ead2&pid=1-s2.0-S016920702400027X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016920702400027X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702400027X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在预测中,样本内拟合度与样本外预测准确度之间存在权衡。简约的模型规格通常优于丰富的模型规格。因此,为了防止过度拟合数据,预测中往往会保留一些信息。我们表明,利用这些信息的一种方法是通过预测组合。在这种环境下,最优组合权重可使条件均方误差最小化,从而平衡组合的条件偏差和条件方差。偏差调整后的条件最优预测权重具有时变性和前瞻性。对基于模型的条件最优预测组合进行的实时测试和对专业预测人员的调查显示,相对于通货膨胀和其他宏观经济变量的标准基准,条件最优预测组合的预测准确性显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditionally optimal weights and forward-looking approaches to combining forecasts

In forecasting, there is a tradeoff between in-sample fit and out-of-sample forecast accuracy. Parsimonious model specifications typically outperform richer model specifications. Consequently, information is often withheld from a forecast to prevent over-fitting the data. We show that one way to exploit this information is through forecast combination. Optimal combination weights in this environment minimize the conditional mean squared error that balances the conditional bias and the conditional variance of the combination. The bias-adjusted conditionally optimal forecast weights are time varying and forward looking. Real-time tests of conditionally optimal combinations of model-based forecasts and surveys of professional forecasters show significant gains in forecast accuracy relative to standard benchmarks for inflation and other macroeconomic variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信