Helga Kristin Olafsdottir , Holger Rootzén , David Bolin
{"title":"评估极值预测的局部尾尺度不变评分规则","authors":"Helga Kristin Olafsdottir , Holger Rootzén , David Bolin","doi":"10.1016/j.ijforecast.2024.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>Statistical analysis of extremes can be used to predict the probability of future extreme events, such as large rainfalls or devastating windstorms. The quality of these forecasts can be measured through scoring rules. Locally scale invariant scoring rules give equal importance to the forecasts at different locations regardless of differences in the prediction uncertainty. This is a useful feature when computing average scores but can be an unnecessarily strict requirement when one is mostly concerned with extremes. We propose the concept of local weight-scale invariance, describing scoring rules fulfilling local scale invariance in a certain region of interest, and as a special case, local tail-scale invariance for large events. Moreover, a new version of the weighted continuous ranked probability score (wCRPS) called the scaled wCRPS (swCRPS) that possesses this property is developed and studied. The score is a suitable alternative for scoring extreme value models over areas with a varying scale of extreme events, and we derive explicit formulas of the score for the generalised extreme value distribution. The scoring rules are compared through simulations, and their usage is illustrated by modelling extreme water levels and annual maximum rainfall, and in an application to non-extreme forecasts for the prediction of air pollution.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1701-1720"},"PeriodicalIF":6.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207024000128/pdfft?md5=0dc152533b3e57e00ccdf1336680c44d&pid=1-s2.0-S0169207024000128-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Locally tail-scale invariant scoring rules for evaluation of extreme value forecasts\",\"authors\":\"Helga Kristin Olafsdottir , Holger Rootzén , David Bolin\",\"doi\":\"10.1016/j.ijforecast.2024.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Statistical analysis of extremes can be used to predict the probability of future extreme events, such as large rainfalls or devastating windstorms. The quality of these forecasts can be measured through scoring rules. Locally scale invariant scoring rules give equal importance to the forecasts at different locations regardless of differences in the prediction uncertainty. This is a useful feature when computing average scores but can be an unnecessarily strict requirement when one is mostly concerned with extremes. We propose the concept of local weight-scale invariance, describing scoring rules fulfilling local scale invariance in a certain region of interest, and as a special case, local tail-scale invariance for large events. Moreover, a new version of the weighted continuous ranked probability score (wCRPS) called the scaled wCRPS (swCRPS) that possesses this property is developed and studied. The score is a suitable alternative for scoring extreme value models over areas with a varying scale of extreme events, and we derive explicit formulas of the score for the generalised extreme value distribution. The scoring rules are compared through simulations, and their usage is illustrated by modelling extreme water levels and annual maximum rainfall, and in an application to non-extreme forecasts for the prediction of air pollution.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"40 4\",\"pages\":\"Pages 1701-1720\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000128/pdfft?md5=0dc152533b3e57e00ccdf1336680c44d&pid=1-s2.0-S0169207024000128-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000128\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000128","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Locally tail-scale invariant scoring rules for evaluation of extreme value forecasts
Statistical analysis of extremes can be used to predict the probability of future extreme events, such as large rainfalls or devastating windstorms. The quality of these forecasts can be measured through scoring rules. Locally scale invariant scoring rules give equal importance to the forecasts at different locations regardless of differences in the prediction uncertainty. This is a useful feature when computing average scores but can be an unnecessarily strict requirement when one is mostly concerned with extremes. We propose the concept of local weight-scale invariance, describing scoring rules fulfilling local scale invariance in a certain region of interest, and as a special case, local tail-scale invariance for large events. Moreover, a new version of the weighted continuous ranked probability score (wCRPS) called the scaled wCRPS (swCRPS) that possesses this property is developed and studied. The score is a suitable alternative for scoring extreme value models over areas with a varying scale of extreme events, and we derive explicit formulas of the score for the generalised extreme value distribution. The scoring rules are compared through simulations, and their usage is illustrated by modelling extreme water levels and annual maximum rainfall, and in an application to non-extreme forecasts for the prediction of air pollution.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.