{"title":"微复合 (1-x)WO3 - xZnO 陶瓷的低能离子改性对提高光催化分解效率的影响","authors":"","doi":"10.1016/j.jphotochem.2024.115994","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this work is to study the possibility of using ionic modification of (1-x)WO<sub>3</sub> – xZnO microcomposite ceramics in order to elevate their photocatalytic activity, as well as enhance stability to degradation during long-term use and exposure to aggressive environments. The objects of study were (1-x)WO<sub>3</sub> – xZnO ceramics obtained by solid-phase synthesis from tungsten and zinc oxides. Moreover, according to X-ray phase analysis data, it was found that variations in the ratio of oxide components during their mechanical activation and subsequent thermal annealing result in the formation of two-phase ceramics with different contents of the zinc tungstate phase. The results of experiments on the photocatalytic decomposition of the organic dye Rhodamine B revealed that two-phase WO<sub>3</sub>/ZnWO<sub>4</sub> ceramics have the greatest efficiency, for which ion irradiation with fluences of 10<sup>15</sup> ––5 × 10<sup>15</sup> leads to a growth in the decomposition efficiency from 80 to 95 %. At the same time, the dominant effect influencing the photocatalytic decomposition efficiency growth is the change in the band gap of the ceramics, associated with the accumulation of the athermal effect of energy dissipation of incident ions on the change in electron density. The results of assessment of changes in the strength and structural parameters of (1-x)WO<sub>3</sub> – xZnO ceramics depending on the time spent in model solutions (to simulate the effects of environments with different acidity levels) indicate a positive effect of ionic modification on enhancing stability to degradation and softening as a result of the accumulation of amorphous inclusions.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1010603024005380/pdfft?md5=2d88982e89e15d0de5598bd95c1893c6&pid=1-s2.0-S1010603024005380-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of low-energy ion modification of microcomposite (1-x)WO3 – xZnO ceramics on improved photocatalytic decomposition efficiency\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main purpose of this work is to study the possibility of using ionic modification of (1-x)WO<sub>3</sub> – xZnO microcomposite ceramics in order to elevate their photocatalytic activity, as well as enhance stability to degradation during long-term use and exposure to aggressive environments. The objects of study were (1-x)WO<sub>3</sub> – xZnO ceramics obtained by solid-phase synthesis from tungsten and zinc oxides. Moreover, according to X-ray phase analysis data, it was found that variations in the ratio of oxide components during their mechanical activation and subsequent thermal annealing result in the formation of two-phase ceramics with different contents of the zinc tungstate phase. The results of experiments on the photocatalytic decomposition of the organic dye Rhodamine B revealed that two-phase WO<sub>3</sub>/ZnWO<sub>4</sub> ceramics have the greatest efficiency, for which ion irradiation with fluences of 10<sup>15</sup> ––5 × 10<sup>15</sup> leads to a growth in the decomposition efficiency from 80 to 95 %. At the same time, the dominant effect influencing the photocatalytic decomposition efficiency growth is the change in the band gap of the ceramics, associated with the accumulation of the athermal effect of energy dissipation of incident ions on the change in electron density. The results of assessment of changes in the strength and structural parameters of (1-x)WO<sub>3</sub> – xZnO ceramics depending on the time spent in model solutions (to simulate the effects of environments with different acidity levels) indicate a positive effect of ionic modification on enhancing stability to degradation and softening as a result of the accumulation of amorphous inclusions.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005380/pdfft?md5=2d88982e89e15d0de5598bd95c1893c6&pid=1-s2.0-S1010603024005380-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005380\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024005380","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of low-energy ion modification of microcomposite (1-x)WO3 – xZnO ceramics on improved photocatalytic decomposition efficiency
The main purpose of this work is to study the possibility of using ionic modification of (1-x)WO3 – xZnO microcomposite ceramics in order to elevate their photocatalytic activity, as well as enhance stability to degradation during long-term use and exposure to aggressive environments. The objects of study were (1-x)WO3 – xZnO ceramics obtained by solid-phase synthesis from tungsten and zinc oxides. Moreover, according to X-ray phase analysis data, it was found that variations in the ratio of oxide components during their mechanical activation and subsequent thermal annealing result in the formation of two-phase ceramics with different contents of the zinc tungstate phase. The results of experiments on the photocatalytic decomposition of the organic dye Rhodamine B revealed that two-phase WO3/ZnWO4 ceramics have the greatest efficiency, for which ion irradiation with fluences of 1015 ––5 × 1015 leads to a growth in the decomposition efficiency from 80 to 95 %. At the same time, the dominant effect influencing the photocatalytic decomposition efficiency growth is the change in the band gap of the ceramics, associated with the accumulation of the athermal effect of energy dissipation of incident ions on the change in electron density. The results of assessment of changes in the strength and structural parameters of (1-x)WO3 – xZnO ceramics depending on the time spent in model solutions (to simulate the effects of environments with different acidity levels) indicate a positive effect of ionic modification on enhancing stability to degradation and softening as a result of the accumulation of amorphous inclusions.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.