Zihao Liu , Tianbao Huang , Yong Wu , Xiaoli Zhang , Chunxiao Liu , Zhibo Yu , Can Xu , Guanglong Ou
{"title":"通过整合中高分辨率光学图像反演金沙江干热河谷林地地上生物量:中国西南元谋县案例研究","authors":"Zihao Liu , Tianbao Huang , Yong Wu , Xiaoli Zhang , Chunxiao Liu , Zhibo Yu , Can Xu , Guanglong Ou","doi":"10.1016/j.ecoinf.2024.102796","DOIUrl":null,"url":null,"abstract":"<div><p>It is crucial to develop a comprehensive method for estimating the aboveground biomass (AGB) of trees, shrubs, grasslands, and sparse tree areas in ecologically fragile dry, hot valley regions with vertical zonation. Multi-source remote-sensing data can fulfill this requirement, providing help in monitoring the health of ecosystems and providing a basis for regional biodiversity conservation and restoration. Sentinel-2A satellite imagery was used to classify the forests, shrubs, and grasslands in Yuanmou County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. The Gaofen-2 satellite (GF-2) was used to extract the canopy width and calculate tree biomass in the valley-type savanna region. These data were combined with remote-sensing factors and measured survey data, and random forest (RF) and extreme gradient boosting (XGBoost) models were used to estimate the biomass. Using GF-2 images to segment sparse tree areas effectively reduced the overestimation of low-resolution remote-sensing images, enabling the AGB of sparse trees to be accurately estimated. The biomass estimations based on the Sentinel-2A images attained coefficient of determination (<em>R</em><sup>2</sup>) values of 0.45 and 0.47 for the forest, 0.55 and 0.61 for the shrubs, and 0.32 and 0.37 for the grasslands using RF and XGBoost models, respectively, demonstrating variable effectiveness across vegetation types. In addition, the XGBoost model was more robust than the RF model for all three vegetation types. Our methodology provides scientific support for the sustainable development of ecologically fragile dry, hot valleys and savanna areas.</p></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003388/pdfft?md5=f506a70c66cbd6e3955a7dc2b7fe8e55&pid=1-s2.0-S1574954124003388-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Aboveground biomass inversion of forestland in a Jinsha River dry-hot valley by integrating high and medium spatial resolution optical images: A case study on Yuanmou County of Southwest China\",\"authors\":\"Zihao Liu , Tianbao Huang , Yong Wu , Xiaoli Zhang , Chunxiao Liu , Zhibo Yu , Can Xu , Guanglong Ou\",\"doi\":\"10.1016/j.ecoinf.2024.102796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is crucial to develop a comprehensive method for estimating the aboveground biomass (AGB) of trees, shrubs, grasslands, and sparse tree areas in ecologically fragile dry, hot valley regions with vertical zonation. Multi-source remote-sensing data can fulfill this requirement, providing help in monitoring the health of ecosystems and providing a basis for regional biodiversity conservation and restoration. Sentinel-2A satellite imagery was used to classify the forests, shrubs, and grasslands in Yuanmou County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. The Gaofen-2 satellite (GF-2) was used to extract the canopy width and calculate tree biomass in the valley-type savanna region. These data were combined with remote-sensing factors and measured survey data, and random forest (RF) and extreme gradient boosting (XGBoost) models were used to estimate the biomass. Using GF-2 images to segment sparse tree areas effectively reduced the overestimation of low-resolution remote-sensing images, enabling the AGB of sparse trees to be accurately estimated. The biomass estimations based on the Sentinel-2A images attained coefficient of determination (<em>R</em><sup>2</sup>) values of 0.45 and 0.47 for the forest, 0.55 and 0.61 for the shrubs, and 0.32 and 0.37 for the grasslands using RF and XGBoost models, respectively, demonstrating variable effectiveness across vegetation types. In addition, the XGBoost model was more robust than the RF model for all three vegetation types. Our methodology provides scientific support for the sustainable development of ecologically fragile dry, hot valleys and savanna areas.</p></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1574954124003388/pdfft?md5=f506a70c66cbd6e3955a7dc2b7fe8e55&pid=1-s2.0-S1574954124003388-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954124003388\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003388","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Aboveground biomass inversion of forestland in a Jinsha River dry-hot valley by integrating high and medium spatial resolution optical images: A case study on Yuanmou County of Southwest China
It is crucial to develop a comprehensive method for estimating the aboveground biomass (AGB) of trees, shrubs, grasslands, and sparse tree areas in ecologically fragile dry, hot valley regions with vertical zonation. Multi-source remote-sensing data can fulfill this requirement, providing help in monitoring the health of ecosystems and providing a basis for regional biodiversity conservation and restoration. Sentinel-2A satellite imagery was used to classify the forests, shrubs, and grasslands in Yuanmou County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. The Gaofen-2 satellite (GF-2) was used to extract the canopy width and calculate tree biomass in the valley-type savanna region. These data were combined with remote-sensing factors and measured survey data, and random forest (RF) and extreme gradient boosting (XGBoost) models were used to estimate the biomass. Using GF-2 images to segment sparse tree areas effectively reduced the overestimation of low-resolution remote-sensing images, enabling the AGB of sparse trees to be accurately estimated. The biomass estimations based on the Sentinel-2A images attained coefficient of determination (R2) values of 0.45 and 0.47 for the forest, 0.55 and 0.61 for the shrubs, and 0.32 and 0.37 for the grasslands using RF and XGBoost models, respectively, demonstrating variable effectiveness across vegetation types. In addition, the XGBoost model was more robust than the RF model for all three vegetation types. Our methodology provides scientific support for the sustainable development of ecologically fragile dry, hot valleys and savanna areas.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.