最大阶数为 5 的平面图的改进型 2-距离着色

IF 0.7 3区 数学 Q2 MATHEMATICS
Kengo Aoki
{"title":"最大阶数为 5 的平面图的改进型 2-距离着色","authors":"Kengo Aoki","doi":"10.1016/j.disc.2024.114225","DOIUrl":null,"url":null,"abstract":"<div><p>A 2-distance <em>k</em>-coloring of a graph <em>G</em> is a proper <em>k</em>-coloring such that any two vertices at distance two or less get different colors. The 2-distance chromatic number of <em>G</em> is the minimum <em>k</em> such that <em>G</em> has a 2-distance <em>k</em>-coloring, denoted by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>17</mn></math></span> for every planar graph <em>G</em> with maximum degree <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>5</mn></math></span>, which improves a former bound <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>18</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114225"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X2400356X/pdfft?md5=5c41865d9f4804580262cd339c332dbd&pid=1-s2.0-S0012365X2400356X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved 2-distance coloring of planar graphs with maximum degree 5\",\"authors\":\"Kengo Aoki\",\"doi\":\"10.1016/j.disc.2024.114225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A 2-distance <em>k</em>-coloring of a graph <em>G</em> is a proper <em>k</em>-coloring such that any two vertices at distance two or less get different colors. The 2-distance chromatic number of <em>G</em> is the minimum <em>k</em> such that <em>G</em> has a 2-distance <em>k</em>-coloring, denoted by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>17</mn></math></span> for every planar graph <em>G</em> with maximum degree <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>5</mn></math></span>, which improves a former bound <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>18</mn></math></span>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114225\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2400356X/pdfft?md5=5c41865d9f4804580262cd339c332dbd&pid=1-s2.0-S0012365X2400356X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2400356X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400356X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的 2-distance k-coloring(2-距离 k-着色)是一种适当的 k-着色,使得距离为 2 或更小的任意两个顶点获得不同的颜色。G 的双距色度数是使 G 具有双距 k 着色的最小 k 值,用 χ2(G)表示。本文证明,对于最大度 Δ(G)≤5 的每个平面图 G,χ2(G)≤17,这改进了以前的一个约束 χ2(G)≤18。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved 2-distance coloring of planar graphs with maximum degree 5

A 2-distance k-coloring of a graph G is a proper k-coloring such that any two vertices at distance two or less get different colors. The 2-distance chromatic number of G is the minimum k such that G has a 2-distance k-coloring, denoted by χ2(G). In this paper, we show that χ2(G)17 for every planar graph G with maximum degree Δ(G)5, which improves a former bound χ2(G)18.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信