{"title":"计算一般通信拓扑结构下车辆排的精确时延裕度","authors":"Xu Zhu , Maode Yan , Panpan Yang , Yongtao Liu","doi":"10.1016/j.jtte.2022.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication, it is inevitable to induce time delay, which significantly degrades the control performance of the vehicle platoon, even resulting in instability. This paper focuses on analyzing the internal stability under generic communication topologies and presents a method of computing the exact time delay margin (ETDM). The proposed method can offer a necessary and sufficient internal stability condition with no conservatism. Firstly, to reduce the analytical complexity and computational burden elegantly, we decompose the closed-loop platoon dynamics into a set of individual subsystems via similarity transformation and matrix factorization. This decomposition approach is applicable for any general communication topology. Secondly, an explicit formula is deduced to compute the ETDM by surveying the characteristic roots' distribution of all these individual subsystems. It is further demonstrated that only the positive purely imaginary roots need to be considered to compute the ETDM. Finally, simulations are conducted to demonstrate the effectiveness of the theoretical claims.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095756424000734/pdfft?md5=873e144ba9b8ebd23d45c8db917a4742&pid=1-s2.0-S2095756424000734-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Computation of the exact time delay margin for vehicle platoon under generic communication topologies\",\"authors\":\"Xu Zhu , Maode Yan , Panpan Yang , Yongtao Liu\",\"doi\":\"10.1016/j.jtte.2022.06.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication, it is inevitable to induce time delay, which significantly degrades the control performance of the vehicle platoon, even resulting in instability. This paper focuses on analyzing the internal stability under generic communication topologies and presents a method of computing the exact time delay margin (ETDM). The proposed method can offer a necessary and sufficient internal stability condition with no conservatism. Firstly, to reduce the analytical complexity and computational burden elegantly, we decompose the closed-loop platoon dynamics into a set of individual subsystems via similarity transformation and matrix factorization. This decomposition approach is applicable for any general communication topology. Secondly, an explicit formula is deduced to compute the ETDM by surveying the characteristic roots' distribution of all these individual subsystems. It is further demonstrated that only the positive purely imaginary roots need to be considered to compute the ETDM. Finally, simulations are conducted to demonstrate the effectiveness of the theoretical claims.</p></div>\",\"PeriodicalId\":47239,\"journal\":{\"name\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095756424000734/pdfft?md5=873e144ba9b8ebd23d45c8db917a4742&pid=1-s2.0-S2095756424000734-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095756424000734\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756424000734","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Computation of the exact time delay margin for vehicle platoon under generic communication topologies
Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication, it is inevitable to induce time delay, which significantly degrades the control performance of the vehicle platoon, even resulting in instability. This paper focuses on analyzing the internal stability under generic communication topologies and presents a method of computing the exact time delay margin (ETDM). The proposed method can offer a necessary and sufficient internal stability condition with no conservatism. Firstly, to reduce the analytical complexity and computational burden elegantly, we decompose the closed-loop platoon dynamics into a set of individual subsystems via similarity transformation and matrix factorization. This decomposition approach is applicable for any general communication topology. Secondly, an explicit formula is deduced to compute the ETDM by surveying the characteristic roots' distribution of all these individual subsystems. It is further demonstrated that only the positive purely imaginary roots need to be considered to compute the ETDM. Finally, simulations are conducted to demonstrate the effectiveness of the theoretical claims.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.