半完全区间图

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Robert Scheffler
{"title":"半完全区间图","authors":"Robert Scheffler","doi":"10.1016/j.dam.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new subclass of interval graphs that generalizes connected proper interval graphs. These graphs are characterized by vertex orderings called connected perfect elimination orderings (PEO), i.e., PEOs where consecutive vertices are adjacent. Alternatively, these graphs can also be characterized by special interval models and clique orderings. We present a linear-time recognition algorithm that uses PQ-trees. Furthermore, we study the behavior of multi-sweep graph searches on this graph class. This study also shows that Corneil’s well-known LBFS-recognition algorithm for proper interval graphs can be generalized to a large family of graph searches. Finally, we show that a strong result on the existence of Hamiltonian paths and cycles in proper interval graphs can be generalized to semi-proper interval graphs.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 22-41"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003743/pdfft?md5=6110dc7ab7e08b99475c2042354b19c5&pid=1-s2.0-S0166218X24003743-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Semi-proper interval graphs\",\"authors\":\"Robert Scheffler\",\"doi\":\"10.1016/j.dam.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a new subclass of interval graphs that generalizes connected proper interval graphs. These graphs are characterized by vertex orderings called connected perfect elimination orderings (PEO), i.e., PEOs where consecutive vertices are adjacent. Alternatively, these graphs can also be characterized by special interval models and clique orderings. We present a linear-time recognition algorithm that uses PQ-trees. Furthermore, we study the behavior of multi-sweep graph searches on this graph class. This study also shows that Corneil’s well-known LBFS-recognition algorithm for proper interval graphs can be generalized to a large family of graph searches. Finally, we show that a strong result on the existence of Hamiltonian paths and cycles in proper interval graphs can be generalized to semi-proper interval graphs.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 22-41\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003743/pdfft?md5=6110dc7ab7e08b99475c2042354b19c5&pid=1-s2.0-S0166218X24003743-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003743\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的区间图子类,它概括了连通的适当区间图。这些图的顶点排序称为连通完全消元排序(PEO),即连续顶点相邻的 PEO。或者,这些图也可以用特殊的区间模型和簇排序来表征。我们提出了一种使用 PQ 树的线性时间识别算法。此外,我们还研究了多扫图搜索在这类图上的行为。这项研究还表明,Corneil 著名的适当区间图 LBFS 识别算法可以推广到一大类图搜索。最后,我们还证明了在适当区间图中存在哈密尔顿路径和循环的强大结果可以推广到半适当区间图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-proper interval graphs

We present a new subclass of interval graphs that generalizes connected proper interval graphs. These graphs are characterized by vertex orderings called connected perfect elimination orderings (PEO), i.e., PEOs where consecutive vertices are adjacent. Alternatively, these graphs can also be characterized by special interval models and clique orderings. We present a linear-time recognition algorithm that uses PQ-trees. Furthermore, we study the behavior of multi-sweep graph searches on this graph class. This study also shows that Corneil’s well-known LBFS-recognition algorithm for proper interval graphs can be generalized to a large family of graph searches. Finally, we show that a strong result on the existence of Hamiltonian paths and cycles in proper interval graphs can be generalized to semi-proper interval graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信