Ji Yoon Cha , Tae-Kyung Kim , Yea-Ji Kim , Jae-Hoon Lee , Min-Cheol Kang , Hae Won Jang , Yun-Sang Choi
{"title":"比较塑料笼和玻璃笼对栉水母幼虫提取的蛋白质中挥发性化合物的影响","authors":"Ji Yoon Cha , Tae-Kyung Kim , Yea-Ji Kim , Jae-Hoon Lee , Min-Cheol Kang , Hae Won Jang , Yun-Sang Choi","doi":"10.1016/j.fufo.2024.100429","DOIUrl":null,"url":null,"abstract":"<div><p>Edible insects, known for their high-protein production efficiency, are vital for enhancing food security. However, standardized breeding protocols are lacking, and research on the impact of cage materials on insect product composition is limited. This study investigated the volatile compounds and processing properties of protein from <em>Protaetia brevitarsis</em> larvae reared in plastic and glass cages. Protein extracts from larvae reared in plastic cages contained 14 types of hydrocarbons, 4 types of ketones, and 1 type of phenol. Those reared in glass cages contained two types of acids, seven types of alcohols, and five types of aldehydes. Notably, plastic-derived compounds, such as p-xylene (110.87 μg/mL) and o-xylene (37.98 μg/mL), were significantly higher in the extracts from plastic cages, indicating potential plastic exposure. Processing properties, including protein solubility, pH, color, foaming properties, and emulsion characteristics, showed no significant differences between the two rearing conditions (P > 0.05). Therefore, considering the detection and potential accumulation of plastic-derived volatile compounds, using glass cages may be more beneficial for rearing insects for protein production.</p></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100429"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666833524001357/pdfft?md5=5df8de8d3f37c7519b1a1ac9ffa2360b&pid=1-s2.0-S2666833524001357-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of plastic and glass cages on volatile compounds in protein extracted from Protaetia brevitarsis larvae\",\"authors\":\"Ji Yoon Cha , Tae-Kyung Kim , Yea-Ji Kim , Jae-Hoon Lee , Min-Cheol Kang , Hae Won Jang , Yun-Sang Choi\",\"doi\":\"10.1016/j.fufo.2024.100429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Edible insects, known for their high-protein production efficiency, are vital for enhancing food security. However, standardized breeding protocols are lacking, and research on the impact of cage materials on insect product composition is limited. This study investigated the volatile compounds and processing properties of protein from <em>Protaetia brevitarsis</em> larvae reared in plastic and glass cages. Protein extracts from larvae reared in plastic cages contained 14 types of hydrocarbons, 4 types of ketones, and 1 type of phenol. Those reared in glass cages contained two types of acids, seven types of alcohols, and five types of aldehydes. Notably, plastic-derived compounds, such as p-xylene (110.87 μg/mL) and o-xylene (37.98 μg/mL), were significantly higher in the extracts from plastic cages, indicating potential plastic exposure. Processing properties, including protein solubility, pH, color, foaming properties, and emulsion characteristics, showed no significant differences between the two rearing conditions (P > 0.05). Therefore, considering the detection and potential accumulation of plastic-derived volatile compounds, using glass cages may be more beneficial for rearing insects for protein production.</p></div>\",\"PeriodicalId\":34474,\"journal\":{\"name\":\"Future Foods\",\"volume\":\"10 \",\"pages\":\"Article 100429\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666833524001357/pdfft?md5=5df8de8d3f37c7519b1a1ac9ffa2360b&pid=1-s2.0-S2666833524001357-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666833524001357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524001357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Comparison of plastic and glass cages on volatile compounds in protein extracted from Protaetia brevitarsis larvae
Edible insects, known for their high-protein production efficiency, are vital for enhancing food security. However, standardized breeding protocols are lacking, and research on the impact of cage materials on insect product composition is limited. This study investigated the volatile compounds and processing properties of protein from Protaetia brevitarsis larvae reared in plastic and glass cages. Protein extracts from larvae reared in plastic cages contained 14 types of hydrocarbons, 4 types of ketones, and 1 type of phenol. Those reared in glass cages contained two types of acids, seven types of alcohols, and five types of aldehydes. Notably, plastic-derived compounds, such as p-xylene (110.87 μg/mL) and o-xylene (37.98 μg/mL), were significantly higher in the extracts from plastic cages, indicating potential plastic exposure. Processing properties, including protein solubility, pH, color, foaming properties, and emulsion characteristics, showed no significant differences between the two rearing conditions (P > 0.05). Therefore, considering the detection and potential accumulation of plastic-derived volatile compounds, using glass cages may be more beneficial for rearing insects for protein production.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP