Aisha Aminu Adam , Abubakar Adamu , Abdulkarim Hassan Ibrahim , Dilber Uzun Ozsahin
{"title":"变分不等式的惯性哈尔帕恩型方法在医学图像复原中的应用","authors":"Aisha Aminu Adam , Abubakar Adamu , Abdulkarim Hassan Ibrahim , Dilber Uzun Ozsahin","doi":"10.1016/j.cnsns.2024.108315","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose inertial Halpern-type algorithms involving a quasi-monotone operator for approximating solutions of variational inequality problems which are fixed points of quasi-nonexpansive mappings in reflexive Banach spaces. We use Bregman distance functions to enhance the efficiency of our algorithms and obtain strong convergence results, even in cases where the Lipschitz constant of the operator involved is unknown a priori. Furthermore, we illustrate the practical applicability of our methods through numerical experiments. Notably, our algorithms excel when compared to recent techniques in the literature. Of particular significance is their successful application in restoring computed tomography medical images that have been affected by motion blur and random noise. Our algorithms consistently outperform established state-of-the-art methods in all conducted experiments, showcasing their competitiveness and potential to advance variational inequality problem-solving, especially in the field of medical image recovery.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial Halpern-type methods for variational inequality with application to medical image recovery\",\"authors\":\"Aisha Aminu Adam , Abubakar Adamu , Abdulkarim Hassan Ibrahim , Dilber Uzun Ozsahin\",\"doi\":\"10.1016/j.cnsns.2024.108315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose inertial Halpern-type algorithms involving a quasi-monotone operator for approximating solutions of variational inequality problems which are fixed points of quasi-nonexpansive mappings in reflexive Banach spaces. We use Bregman distance functions to enhance the efficiency of our algorithms and obtain strong convergence results, even in cases where the Lipschitz constant of the operator involved is unknown a priori. Furthermore, we illustrate the practical applicability of our methods through numerical experiments. Notably, our algorithms excel when compared to recent techniques in the literature. Of particular significance is their successful application in restoring computed tomography medical images that have been affected by motion blur and random noise. Our algorithms consistently outperform established state-of-the-art methods in all conducted experiments, showcasing their competitiveness and potential to advance variational inequality problem-solving, especially in the field of medical image recovery.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005008\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Inertial Halpern-type methods for variational inequality with application to medical image recovery
In this paper, we propose inertial Halpern-type algorithms involving a quasi-monotone operator for approximating solutions of variational inequality problems which are fixed points of quasi-nonexpansive mappings in reflexive Banach spaces. We use Bregman distance functions to enhance the efficiency of our algorithms and obtain strong convergence results, even in cases where the Lipschitz constant of the operator involved is unknown a priori. Furthermore, we illustrate the practical applicability of our methods through numerical experiments. Notably, our algorithms excel when compared to recent techniques in the literature. Of particular significance is their successful application in restoring computed tomography medical images that have been affected by motion blur and random noise. Our algorithms consistently outperform established state-of-the-art methods in all conducted experiments, showcasing their competitiveness and potential to advance variational inequality problem-solving, especially in the field of medical image recovery.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.