鲍尔简约和小边界特性

IF 1.7 2区 数学 Q1 MATHEMATICS
David Kerr, Grigoris Kopsacheilis, Spyridon Petrakos
{"title":"鲍尔简约和小边界特性","authors":"David Kerr,&nbsp;Grigoris Kopsacheilis,&nbsp;Spyridon Petrakos","doi":"10.1016/j.jfa.2024.110619","DOIUrl":null,"url":null,"abstract":"<div><p>We show that, for every minimal action of a countably infinite discrete group on a compact metrizable space, if the extreme boundary of the simplex of invariant Borel probability measures is closed and has finite covering dimension then the action has the small boundary property.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003070/pdfft?md5=e75e9e687a8f6b2feb4b93beccad17e0&pid=1-s2.0-S0022123624003070-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bauer simplices and the small boundary property\",\"authors\":\"David Kerr,&nbsp;Grigoris Kopsacheilis,&nbsp;Spyridon Petrakos\",\"doi\":\"10.1016/j.jfa.2024.110619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that, for every minimal action of a countably infinite discrete group on a compact metrizable space, if the extreme boundary of the simplex of invariant Borel probability measures is closed and has finite covering dimension then the action has the small boundary property.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003070/pdfft?md5=e75e9e687a8f6b2feb4b93beccad17e0&pid=1-s2.0-S0022123624003070-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003070\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003070","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于可数无限离散群在紧凑可元空间上的每一个最小作用,如果不变 Borel 概率度量的单纯形的极边界是封闭的,并且具有有限的覆盖维度,那么该作用就具有小边界特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bauer simplices and the small boundary property

We show that, for every minimal action of a countably infinite discrete group on a compact metrizable space, if the extreme boundary of the simplex of invariant Borel probability measures is closed and has finite covering dimension then the action has the small boundary property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信