稳定生物对流的两级箭-赫维茨迭代法

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Yihan Lu, Rong An, Yuan Li
{"title":"稳定生物对流的两级箭-赫维茨迭代法","authors":"Yihan Lu,&nbsp;Rong An,&nbsp;Yuan Li","doi":"10.1016/j.cnsns.2024.108318","DOIUrl":null,"url":null,"abstract":"<div><p>To avoid solving a saddle-point system, in this paper, we study two-level Arrow–Hurwicz finite element methods for the steady bio-convection flows problem which is coupled by the steady Navier–Stokes equations and the steady advection–diffusion equation. Using the mini element to approximate the velocity, pressure, and the piecewise linear element to approximate the concentration, we use the linearized Arrow–Hurwicz iteration scheme to obtain the coarse mesh solution and use three different one-step Stokes/Oseen/Newton linearized scheme to obtain the fine mesh solution. The optimal error estimate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>h</mi><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> of the velocity and concentration in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm and the pressure in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm are derived, where <span><math><mi>h</mi></math></span> and <span><math><mi>H</mi></math></span> are fine and coarse mesh sizes, respectively, and <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> denotes the iteration error with <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>χ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. Numerical results are given to support the theoretical analysis and confirm the efficiency of the proposed two-level methods.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-level Arrow–Hurwicz iteration methods for the steady bio-convection flows\",\"authors\":\"Yihan Lu,&nbsp;Rong An,&nbsp;Yuan Li\",\"doi\":\"10.1016/j.cnsns.2024.108318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To avoid solving a saddle-point system, in this paper, we study two-level Arrow–Hurwicz finite element methods for the steady bio-convection flows problem which is coupled by the steady Navier–Stokes equations and the steady advection–diffusion equation. Using the mini element to approximate the velocity, pressure, and the piecewise linear element to approximate the concentration, we use the linearized Arrow–Hurwicz iteration scheme to obtain the coarse mesh solution and use three different one-step Stokes/Oseen/Newton linearized scheme to obtain the fine mesh solution. The optimal error estimate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>h</mi><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> of the velocity and concentration in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm and the pressure in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm are derived, where <span><math><mi>h</mi></math></span> and <span><math><mi>H</mi></math></span> are fine and coarse mesh sizes, respectively, and <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> denotes the iteration error with <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>χ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. Numerical results are given to support the theoretical analysis and confirm the efficiency of the proposed two-level methods.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005033\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了避免求解鞍点系统,本文研究了稳定纳维-斯托克斯方程和稳定平流-扩散方程耦合的稳定生物平流问题的两级 Arrow-Hurwicz 有限元方法。我们使用微型元素来近似速度和压力,使用片线性元素来近似浓度,使用线性化的 Arrow-Hurwicz 迭代方案来获得粗网格解,使用三种不同的一步式 Stokes/Oseen/Newton 线性方案来获得细网格解。其中,h 和 H 分别为细目和粗目尺寸,χm/2 表示迭代误差,0<χ<1。 数值结果支持了理论分析,并证实了所提出的两级方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-level Arrow–Hurwicz iteration methods for the steady bio-convection flows

To avoid solving a saddle-point system, in this paper, we study two-level Arrow–Hurwicz finite element methods for the steady bio-convection flows problem which is coupled by the steady Navier–Stokes equations and the steady advection–diffusion equation. Using the mini element to approximate the velocity, pressure, and the piecewise linear element to approximate the concentration, we use the linearized Arrow–Hurwicz iteration scheme to obtain the coarse mesh solution and use three different one-step Stokes/Oseen/Newton linearized scheme to obtain the fine mesh solution. The optimal error estimate O(h+H2+χm/2) of the velocity and concentration in the H1-norm and the pressure in the L2-norm are derived, where h and H are fine and coarse mesh sizes, respectively, and χm/2 denotes the iteration error with 0<χ<1. Numerical results are given to support the theoretical analysis and confirm the efficiency of the proposed two-level methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信