Peixuan Shu , Changhai Wang , Yongzhao Hua , Xiwang Dong , Yumeng Liu , Zhang Ren
{"title":"联合连接数字图上无人机和地面飞行器蜂群系统的分布式输出编队跟踪理论与实验","authors":"Peixuan Shu , Changhai Wang , Yongzhao Hua , Xiwang Dong , Yumeng Liu , Zhang Ren","doi":"10.1016/j.conengprac.2024.106070","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the distributed output formation tracking control problem of the unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) swarm systems, where the UAV swarm cooperatively tracks the output trajectory of the UGV in a formation under directed jointly connected communication networks. A three-layer formation tracking protocol is proposed. Firstly, a novel distributed observer using neighbor interactions is designed for each UAV to estimate the states of the UGV with parameterized inputs over periodic jointly connected digraphs. Next, based on the observation result and output regulation theory, a virtual reference system that tracks the trajectory of the UGV in the desired formation is constructed to generate reference states for each UAV. Then based on the differential flatness of UAVs, a geometric controller is utilized for UAVs to track the reference states and form the formation. An algorithm to determine the gain matrices of the protocol is also presented while the convergence of the system is analyzed. Finally, an experiment platform with three quadrotor UAVs and one UGV is built. The effectiveness of the proposed protocol is validated both by the simulation and experiment.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106070"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory and experiment on distributed output formation tracking of unmanned aerial and ground vehicle swarm systems over jointly connected digraphs\",\"authors\":\"Peixuan Shu , Changhai Wang , Yongzhao Hua , Xiwang Dong , Yumeng Liu , Zhang Ren\",\"doi\":\"10.1016/j.conengprac.2024.106070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the distributed output formation tracking control problem of the unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) swarm systems, where the UAV swarm cooperatively tracks the output trajectory of the UGV in a formation under directed jointly connected communication networks. A three-layer formation tracking protocol is proposed. Firstly, a novel distributed observer using neighbor interactions is designed for each UAV to estimate the states of the UGV with parameterized inputs over periodic jointly connected digraphs. Next, based on the observation result and output regulation theory, a virtual reference system that tracks the trajectory of the UGV in the desired formation is constructed to generate reference states for each UAV. Then based on the differential flatness of UAVs, a geometric controller is utilized for UAVs to track the reference states and form the formation. An algorithm to determine the gain matrices of the protocol is also presented while the convergence of the system is analyzed. Finally, an experiment platform with three quadrotor UAVs and one UGV is built. The effectiveness of the proposed protocol is validated both by the simulation and experiment.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"152 \",\"pages\":\"Article 106070\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002296\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002296","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Theory and experiment on distributed output formation tracking of unmanned aerial and ground vehicle swarm systems over jointly connected digraphs
This paper studies the distributed output formation tracking control problem of the unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) swarm systems, where the UAV swarm cooperatively tracks the output trajectory of the UGV in a formation under directed jointly connected communication networks. A three-layer formation tracking protocol is proposed. Firstly, a novel distributed observer using neighbor interactions is designed for each UAV to estimate the states of the UGV with parameterized inputs over periodic jointly connected digraphs. Next, based on the observation result and output regulation theory, a virtual reference system that tracks the trajectory of the UGV in the desired formation is constructed to generate reference states for each UAV. Then based on the differential flatness of UAVs, a geometric controller is utilized for UAVs to track the reference states and form the formation. An algorithm to determine the gain matrices of the protocol is also presented while the convergence of the system is analyzed. Finally, an experiment platform with three quadrotor UAVs and one UGV is built. The effectiveness of the proposed protocol is validated both by the simulation and experiment.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.