图尔基耶近海海面温度变化的时间序列分析

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
{"title":"图尔基耶近海海面温度变化的时间序列分析","authors":"","doi":"10.1016/j.jastp.2024.106339","DOIUrl":null,"url":null,"abstract":"<div><p>Sea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Türkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5<sup>o</sup>x0.5°) monthly SST dataset spanning the years 1970–2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 °C, 20.2 °C, 17.0 °C, and 16.6 °C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 °C, 21.9 °C, 18.1 °C, and 18.8 °C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time series analysis of sea surface temperature change in the coastal seas of Türkiye\",\"authors\":\"\",\"doi\":\"10.1016/j.jastp.2024.106339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Türkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5<sup>o</sup>x0.5°) monthly SST dataset spanning the years 1970–2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 °C, 20.2 °C, 17.0 °C, and 16.6 °C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 °C, 21.9 °C, 18.1 °C, and 18.8 °C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001676\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001676","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

海面温度(SST)是评估空气与海面之间热量交换的重要地球物理参数。SST 的变化及其准确预测在解释全球热平衡、确定大气环流和构建全球气候模型方面发挥着关键作用。本研究旨在揭示一个模型,用于提前一个月预测图尔基耶沿岸(包括地中海、爱琴海、马尔马拉海和黑海)的 SST 时间序列数据及其未来长期预测。为此使用了长短期记忆(LSTM)神经网络和季节自回归综合移动平均(SARIMA)模型。模型开发使用了 ECMWF ERA5(0.5ox0.5°)月度 SST 数据集,时间跨度为 1970-2023 年。LSTM 和 SARIMA 模型得出的结果表明,直到 2050 年,这些沿海地区的海温将呈上升趋势。2023 年地中海、爱琴海、马尔马拉海和黑海沿岸的海温测量值分别为 23.4 ℃、20.2 ℃、17.0 ℃ 和 16.6 ℃,预计到 2050 年将分别升至 25.1 ℃、21.9 ℃、18.1 ℃ 和 18.8 ℃。这些数据表明,在未来四分之一世纪里,这些沿岸海域的海温值将分别上升 7.3%、8.4%、6.5% 和 13.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time series analysis of sea surface temperature change in the coastal seas of Türkiye

Sea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Türkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5ox0.5°) monthly SST dataset spanning the years 1970–2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 °C, 20.2 °C, 17.0 °C, and 16.6 °C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 °C, 21.9 °C, 18.1 °C, and 18.8 °C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信