{"title":"断层岩特性和条件在南海海槽地震破裂传播过程中产生的滑移差异","authors":"Kenichi Tsuda , Tetsuro Hirono","doi":"10.1016/j.tecto.2024.230483","DOIUrl":null,"url":null,"abstract":"<div><p>Although drilled samples of fault rocks have yielded information on frictional features of shallow subduction zones, the relationship of rupture propagation to the levels of friction and pore-fluid pressure remains uncertain. To investigate this topic, we performed dynamic rupture simulations along the megasplay fault that slipped during the 1944 M<sub>w</sub> 8.0 Tonankai earthquake in the Nankai Trough. We used actual data from friction experiments on rocks from the fault segment and pre-existing pore pressures deduced from geophysical surveys for the shallow portion of 0–10 km depth along the fault. Simulations of low friction (friction coefficient ca. 0.04) produced large slip (about 30 m), whereas simulations using higher friction (friction coefficient ca. 0.2) suppressed the rupture. In simulations with low friction in which the pore-fluid pressure was nearly equal to the lithostatic stress, the slip decreased to about 25 m. However, when the simulations included slip-strengthening at shallow depth and higher friction, the slip still reached roughly 20 m. Such variability in slip during rupture propagation is caused by differences in the friction features and fluid pressure conditions of fault rocks, in which the friction features might be related to the mineral composition. Spatiotemporal heterogeneity in fault-rock type and their physical and hydraulic properties may fundamentally produce the complexity and variability of earthquake rupture propagation along the Nankai plate-subduction boundary.</p></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault rock properties and conditions produce variance in slip during earthquake rupture propagation at the Nankai Trough\",\"authors\":\"Kenichi Tsuda , Tetsuro Hirono\",\"doi\":\"10.1016/j.tecto.2024.230483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although drilled samples of fault rocks have yielded information on frictional features of shallow subduction zones, the relationship of rupture propagation to the levels of friction and pore-fluid pressure remains uncertain. To investigate this topic, we performed dynamic rupture simulations along the megasplay fault that slipped during the 1944 M<sub>w</sub> 8.0 Tonankai earthquake in the Nankai Trough. We used actual data from friction experiments on rocks from the fault segment and pre-existing pore pressures deduced from geophysical surveys for the shallow portion of 0–10 km depth along the fault. Simulations of low friction (friction coefficient ca. 0.04) produced large slip (about 30 m), whereas simulations using higher friction (friction coefficient ca. 0.2) suppressed the rupture. In simulations with low friction in which the pore-fluid pressure was nearly equal to the lithostatic stress, the slip decreased to about 25 m. However, when the simulations included slip-strengthening at shallow depth and higher friction, the slip still reached roughly 20 m. Such variability in slip during rupture propagation is caused by differences in the friction features and fluid pressure conditions of fault rocks, in which the friction features might be related to the mineral composition. Spatiotemporal heterogeneity in fault-rock type and their physical and hydraulic properties may fundamentally produce the complexity and variability of earthquake rupture propagation along the Nankai plate-subduction boundary.</p></div>\",\"PeriodicalId\":22257,\"journal\":{\"name\":\"Tectonophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040195124002853\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195124002853","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Fault rock properties and conditions produce variance in slip during earthquake rupture propagation at the Nankai Trough
Although drilled samples of fault rocks have yielded information on frictional features of shallow subduction zones, the relationship of rupture propagation to the levels of friction and pore-fluid pressure remains uncertain. To investigate this topic, we performed dynamic rupture simulations along the megasplay fault that slipped during the 1944 Mw 8.0 Tonankai earthquake in the Nankai Trough. We used actual data from friction experiments on rocks from the fault segment and pre-existing pore pressures deduced from geophysical surveys for the shallow portion of 0–10 km depth along the fault. Simulations of low friction (friction coefficient ca. 0.04) produced large slip (about 30 m), whereas simulations using higher friction (friction coefficient ca. 0.2) suppressed the rupture. In simulations with low friction in which the pore-fluid pressure was nearly equal to the lithostatic stress, the slip decreased to about 25 m. However, when the simulations included slip-strengthening at shallow depth and higher friction, the slip still reached roughly 20 m. Such variability in slip during rupture propagation is caused by differences in the friction features and fluid pressure conditions of fault rocks, in which the friction features might be related to the mineral composition. Spatiotemporal heterogeneity in fault-rock type and their physical and hydraulic properties may fundamentally produce the complexity and variability of earthquake rupture propagation along the Nankai plate-subduction boundary.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods