{"title":"基于非接触式红外热成像技术的实验室原油储罐内部存储测量","authors":"Hong-Wei Chen, Yu-Jun Guo, Yang Li, Yao-Yu Wei","doi":"10.1016/j.infrared.2024.105543","DOIUrl":null,"url":null,"abstract":"<div><p>Non-contact sludge measurement methods for storage tanks can address the challenge of measuring the volume of sedimented sludge during long-term storage. While infrared thermography technology can address the issue of liquid level detection, its measurement accuracy for the undulating interface of sludge is insufficient. This study designed and constructed experimental setups for measuring sludge in storage tanks. In this study, infrared images taken by an infrared camera were used to record the temperature distribution of the outer wall of the storage tank. The threshold segmentation method is used to determine the accurate sludge boundary line in image processing. Finally, the Three-Dimensional Tank Residue Recovery Algorithm (3D-TRRA) was applied to fit the 3D distribution of the sludge and calculate accurate sludge volumes. The results indicate that the best segmentation is achieved with a threshold of 170. The measurement error for sludge volume is less than 5%. Accurate visual positioning and recognition of sludge are achieved.</p></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"142 ","pages":"Article 105543"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lab-based scale measurements of internal storage of crude oil tank based on non-contact infrared thermography technique\",\"authors\":\"Hong-Wei Chen, Yu-Jun Guo, Yang Li, Yao-Yu Wei\",\"doi\":\"10.1016/j.infrared.2024.105543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-contact sludge measurement methods for storage tanks can address the challenge of measuring the volume of sedimented sludge during long-term storage. While infrared thermography technology can address the issue of liquid level detection, its measurement accuracy for the undulating interface of sludge is insufficient. This study designed and constructed experimental setups for measuring sludge in storage tanks. In this study, infrared images taken by an infrared camera were used to record the temperature distribution of the outer wall of the storage tank. The threshold segmentation method is used to determine the accurate sludge boundary line in image processing. Finally, the Three-Dimensional Tank Residue Recovery Algorithm (3D-TRRA) was applied to fit the 3D distribution of the sludge and calculate accurate sludge volumes. The results indicate that the best segmentation is achieved with a threshold of 170. The measurement error for sludge volume is less than 5%. Accurate visual positioning and recognition of sludge are achieved.</p></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"142 \",\"pages\":\"Article 105543\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449524004274\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004274","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Lab-based scale measurements of internal storage of crude oil tank based on non-contact infrared thermography technique
Non-contact sludge measurement methods for storage tanks can address the challenge of measuring the volume of sedimented sludge during long-term storage. While infrared thermography technology can address the issue of liquid level detection, its measurement accuracy for the undulating interface of sludge is insufficient. This study designed and constructed experimental setups for measuring sludge in storage tanks. In this study, infrared images taken by an infrared camera were used to record the temperature distribution of the outer wall of the storage tank. The threshold segmentation method is used to determine the accurate sludge boundary line in image processing. Finally, the Three-Dimensional Tank Residue Recovery Algorithm (3D-TRRA) was applied to fit the 3D distribution of the sludge and calculate accurate sludge volumes. The results indicate that the best segmentation is achieved with a threshold of 170. The measurement error for sludge volume is less than 5%. Accurate visual positioning and recognition of sludge are achieved.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.