Bo Zhang , Lei Wang , Zhenjun Diwu , Maiqian Nie , Hongyun Nie
{"title":"应激代谢对芽孢杆菌生理生化反应和多环芳烃降解能力的影响","authors":"Bo Zhang , Lei Wang , Zhenjun Diwu , Maiqian Nie , Hongyun Nie","doi":"10.1016/j.ibiod.2024.105909","DOIUrl":null,"url":null,"abstract":"<div><p>A strain of <em>Bacillus licheniformis</em> T5 was isolated from soil contaminated with crude oil due to its efficient degradation of polycyclic aromatic hydrocarbons (PAHs). When subjected to stress metabolism using phenanthrene as a carbon source, significant changes were observed in T5 cells. Infrared spectrum analysis revealed the presence of -C=C- and Ph-O-C (aromatic) groups on the bacterial surface, facilitating the adsorption of PAHs on the phospholipid layer and causing damage to the cell membrane. Scanning electron microscope (SEM) analysis showed the changes of cell morphology, including a large number of folds on the lower surface and the folding of cell membrane. Transmission electron microscope (TEM) observation showed that non-stressed bacteria with adequate nutritional conditions accumulated more lipids. However, the stress group contained more protein. It was found that stress metabolism led to the increase of protein content in T5 cells by 16.4% and the activity of oxidoreductase more than doubled. These physiological and biochemical changes enhance the ability of stressed bacteria to degrade PAHs efficiently, thereby reducing the degradation cycle. The findings offer valuable insights for the remediation of PAHs pollution.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"195 ","pages":"Article 105909"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of stress metabolism on physiological and biochemical reaction and polycyclic aromatic hydrocarbons degradation ability of Bacillus. sp\",\"authors\":\"Bo Zhang , Lei Wang , Zhenjun Diwu , Maiqian Nie , Hongyun Nie\",\"doi\":\"10.1016/j.ibiod.2024.105909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A strain of <em>Bacillus licheniformis</em> T5 was isolated from soil contaminated with crude oil due to its efficient degradation of polycyclic aromatic hydrocarbons (PAHs). When subjected to stress metabolism using phenanthrene as a carbon source, significant changes were observed in T5 cells. Infrared spectrum analysis revealed the presence of -C=C- and Ph-O-C (aromatic) groups on the bacterial surface, facilitating the adsorption of PAHs on the phospholipid layer and causing damage to the cell membrane. Scanning electron microscope (SEM) analysis showed the changes of cell morphology, including a large number of folds on the lower surface and the folding of cell membrane. Transmission electron microscope (TEM) observation showed that non-stressed bacteria with adequate nutritional conditions accumulated more lipids. However, the stress group contained more protein. It was found that stress metabolism led to the increase of protein content in T5 cells by 16.4% and the activity of oxidoreductase more than doubled. These physiological and biochemical changes enhance the ability of stressed bacteria to degrade PAHs efficiently, thereby reducing the degradation cycle. The findings offer valuable insights for the remediation of PAHs pollution.</p></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"195 \",\"pages\":\"Article 105909\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096483052400180X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096483052400180X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effects of stress metabolism on physiological and biochemical reaction and polycyclic aromatic hydrocarbons degradation ability of Bacillus. sp
A strain of Bacillus licheniformis T5 was isolated from soil contaminated with crude oil due to its efficient degradation of polycyclic aromatic hydrocarbons (PAHs). When subjected to stress metabolism using phenanthrene as a carbon source, significant changes were observed in T5 cells. Infrared spectrum analysis revealed the presence of -C=C- and Ph-O-C (aromatic) groups on the bacterial surface, facilitating the adsorption of PAHs on the phospholipid layer and causing damage to the cell membrane. Scanning electron microscope (SEM) analysis showed the changes of cell morphology, including a large number of folds on the lower surface and the folding of cell membrane. Transmission electron microscope (TEM) observation showed that non-stressed bacteria with adequate nutritional conditions accumulated more lipids. However, the stress group contained more protein. It was found that stress metabolism led to the increase of protein content in T5 cells by 16.4% and the activity of oxidoreductase more than doubled. These physiological and biochemical changes enhance the ability of stressed bacteria to degrade PAHs efficiently, thereby reducing the degradation cycle. The findings offer valuable insights for the remediation of PAHs pollution.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.