{"title":"通过 Theta 坐标的 (2,2)-isogenies 注释","authors":"Jianming Lin , Saiyu Wang , Chang-An Zhao","doi":"10.1016/j.ffa.2024.102496","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we revisit the algorithm for computing chains of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-isogenies between products of elliptic curves via theta coordinates proposed by Dartois et al. For each fundamental block of this algorithm, we provide an explicit inversion-free version. Besides, we exploit the technique of <em>x</em>-only ladder to speed up the computation of gluing isogeny. Finally, we present a mixed optimal strategy, which combines the inversion-elimination tool with the original methods together to execute a chain of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-isogenies.</p><p>We make a cost analysis and present a concrete comparison between ours and the previously known methods for inversion elimination. Furthermore, we implement the mixed optimal strategy for benchmark. The results show that when computing <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-isogeny chains with lengths of 126, 208 and 632, compared to Dartois, Maino, Pope and Robert's latest implementation, utilizing our techniques can reduce 9.7%, 9.5% and 9.6% multiplications over the base field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, respectively. Therefore, even for the updated version that employs their inversion-free algorithms, our tools still possess an advantage.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on (2,2)-isogenies via theta coordinates\",\"authors\":\"Jianming Lin , Saiyu Wang , Chang-An Zhao\",\"doi\":\"10.1016/j.ffa.2024.102496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we revisit the algorithm for computing chains of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-isogenies between products of elliptic curves via theta coordinates proposed by Dartois et al. For each fundamental block of this algorithm, we provide an explicit inversion-free version. Besides, we exploit the technique of <em>x</em>-only ladder to speed up the computation of gluing isogeny. Finally, we present a mixed optimal strategy, which combines the inversion-elimination tool with the original methods together to execute a chain of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-isogenies.</p><p>We make a cost analysis and present a concrete comparison between ours and the previously known methods for inversion elimination. Furthermore, we implement the mixed optimal strategy for benchmark. The results show that when computing <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-isogeny chains with lengths of 126, 208 and 632, compared to Dartois, Maino, Pope and Robert's latest implementation, utilizing our techniques can reduce 9.7%, 9.5% and 9.6% multiplications over the base field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, respectively. Therefore, even for the updated version that employs their inversion-free algorithms, our tools still possess an advantage.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001357\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001357","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we revisit the algorithm for computing chains of -isogenies between products of elliptic curves via theta coordinates proposed by Dartois et al. For each fundamental block of this algorithm, we provide an explicit inversion-free version. Besides, we exploit the technique of x-only ladder to speed up the computation of gluing isogeny. Finally, we present a mixed optimal strategy, which combines the inversion-elimination tool with the original methods together to execute a chain of -isogenies.
We make a cost analysis and present a concrete comparison between ours and the previously known methods for inversion elimination. Furthermore, we implement the mixed optimal strategy for benchmark. The results show that when computing -isogeny chains with lengths of 126, 208 and 632, compared to Dartois, Maino, Pope and Robert's latest implementation, utilizing our techniques can reduce 9.7%, 9.5% and 9.6% multiplications over the base field , respectively. Therefore, even for the updated version that employs their inversion-free algorithms, our tools still possess an advantage.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.