{"title":"由 C3N4/MoS2 催化酯化衍生的硼酸酯杂化光热纳米流体,用于高效有机-无机协同润滑","authors":"","doi":"10.1016/j.triboint.2024.110169","DOIUrl":null,"url":null,"abstract":"<div><p>The inferior dispersion stability and simple functionality of MoS<sub>2</sub>-based nanofluids restrict their efficient application in lubrication. Herein, a novel nanofluid composed of C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>, 3-isocyanatopropyltrimethoxysilane, and C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>-catalyzed product (polyethylene glycol-borate ester, PEG-BA) was proposed. C<sub>3</sub>N<sub>4</sub> nanosheets could induce the formation of regular MoS<sub>2</sub> nanospheres. The resulting C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> showed excellent catalytic activity for the esterification of PEG-BA. The C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> @PEG-BA nanofluid exhibited favorable dispersion stability in PEG600 with no stratification for ≥ 82 days. The addition of 3.0 wt% C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> @PEG-BA nanofluid could significantly reduce friction coefficient (30.7 %) and wear scar diameter (28.9 %). The excellent lubrication properties of the nanofluid are attributed to the synergistic lubrication effect of C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> and PEG-BA. Furthermore, the nanofluid exhibits remarkable photothermal conversion performance in both oil and air mediums.</p></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borate ester hybrid photothermal nanofluid derived from C3N4/MoS2 catalyzed esterification for efficient organic-inorganic synergistic lubrication\",\"authors\":\"\",\"doi\":\"10.1016/j.triboint.2024.110169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The inferior dispersion stability and simple functionality of MoS<sub>2</sub>-based nanofluids restrict their efficient application in lubrication. Herein, a novel nanofluid composed of C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>, 3-isocyanatopropyltrimethoxysilane, and C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>-catalyzed product (polyethylene glycol-borate ester, PEG-BA) was proposed. C<sub>3</sub>N<sub>4</sub> nanosheets could induce the formation of regular MoS<sub>2</sub> nanospheres. The resulting C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> showed excellent catalytic activity for the esterification of PEG-BA. The C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> @PEG-BA nanofluid exhibited favorable dispersion stability in PEG600 with no stratification for ≥ 82 days. The addition of 3.0 wt% C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> @PEG-BA nanofluid could significantly reduce friction coefficient (30.7 %) and wear scar diameter (28.9 %). The excellent lubrication properties of the nanofluid are attributed to the synergistic lubrication effect of C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> and PEG-BA. Furthermore, the nanofluid exhibits remarkable photothermal conversion performance in both oil and air mediums.</p></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24009216\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24009216","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Borate ester hybrid photothermal nanofluid derived from C3N4/MoS2 catalyzed esterification for efficient organic-inorganic synergistic lubrication
The inferior dispersion stability and simple functionality of MoS2-based nanofluids restrict their efficient application in lubrication. Herein, a novel nanofluid composed of C3N4/MoS2, 3-isocyanatopropyltrimethoxysilane, and C3N4/MoS2-catalyzed product (polyethylene glycol-borate ester, PEG-BA) was proposed. C3N4 nanosheets could induce the formation of regular MoS2 nanospheres. The resulting C3N4/MoS2 showed excellent catalytic activity for the esterification of PEG-BA. The C3N4/MoS2 @PEG-BA nanofluid exhibited favorable dispersion stability in PEG600 with no stratification for ≥ 82 days. The addition of 3.0 wt% C3N4/MoS2 @PEG-BA nanofluid could significantly reduce friction coefficient (30.7 %) and wear scar diameter (28.9 %). The excellent lubrication properties of the nanofluid are attributed to the synergistic lubrication effect of C3N4/MoS2 and PEG-BA. Furthermore, the nanofluid exhibits remarkable photothermal conversion performance in both oil and air mediums.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.