用于海面温度预报的分层堆叠时空自关注网络

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Yuxin Zhao, Dequan Yang, Jianxin He, Kexin Zhu, Xiong Deng
{"title":"用于海面温度预报的分层堆叠时空自关注网络","authors":"Yuxin Zhao,&nbsp;Dequan Yang,&nbsp;Jianxin He,&nbsp;Kexin Zhu,&nbsp;Xiong Deng","doi":"10.1016/j.ocemod.2024.102427","DOIUrl":null,"url":null,"abstract":"<div><p>Sea surface temperature (SST) is a highly complex spatiotemporal variable, which stems from its susceptibility to non-linear dynamical processes and substantial spatiotemporal variability. In particular, accurately forecasting small-scale SST is a formidable challenge due to the compounded effects of diverse physical processes spanning across various scales. In this study, we employ deep learning methods to mine the ocean’s evolutionary patterns, as the ocean’s dynamic mechanisms are inherently embedded in spatiotemporal data. We propose a hierarchical stacked spatiotemporal self-attention mechanism (HSSSA) network architecture. The hierarchical stacked encoder–decoder architecture provides the capability for feature fusion and extraction at different scales. The spatial self-attention and temporal self-attention modules simultaneously focus on information from different spatial locations and time steps, allowing the exploration of spatiotemporal patterns in the complex dynamics of the ocean. The experiments are conducted on a high-resolution East China Sea dataset (<span><math><mrow><mn>1</mn><mo>/</mo><mn>10</mn><mo>°</mo><mo>×</mo><mn>1</mn><mo>/</mo><mn>10</mn><mo>°</mo></mrow></math></span>) to demonstrate the forecast performance of the proposed model for refined ocean variables. The 15-day forecasts indicate that the HSSSA method outperforms the EOF-ARIMA and CNN-Transformer methods.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"191 ","pages":"Article 102427"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical stacked spatiotemporal self-attention network for sea surface temperature forecasting\",\"authors\":\"Yuxin Zhao,&nbsp;Dequan Yang,&nbsp;Jianxin He,&nbsp;Kexin Zhu,&nbsp;Xiong Deng\",\"doi\":\"10.1016/j.ocemod.2024.102427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea surface temperature (SST) is a highly complex spatiotemporal variable, which stems from its susceptibility to non-linear dynamical processes and substantial spatiotemporal variability. In particular, accurately forecasting small-scale SST is a formidable challenge due to the compounded effects of diverse physical processes spanning across various scales. In this study, we employ deep learning methods to mine the ocean’s evolutionary patterns, as the ocean’s dynamic mechanisms are inherently embedded in spatiotemporal data. We propose a hierarchical stacked spatiotemporal self-attention mechanism (HSSSA) network architecture. The hierarchical stacked encoder–decoder architecture provides the capability for feature fusion and extraction at different scales. The spatial self-attention and temporal self-attention modules simultaneously focus on information from different spatial locations and time steps, allowing the exploration of spatiotemporal patterns in the complex dynamics of the ocean. The experiments are conducted on a high-resolution East China Sea dataset (<span><math><mrow><mn>1</mn><mo>/</mo><mn>10</mn><mo>°</mo><mo>×</mo><mn>1</mn><mo>/</mo><mn>10</mn><mo>°</mo></mrow></math></span>) to demonstrate the forecast performance of the proposed model for refined ocean variables. The 15-day forecasts indicate that the HSSSA method outperforms the EOF-ARIMA and CNN-Transformer methods.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"191 \",\"pages\":\"Article 102427\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324001148\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001148","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海面温度(SST)是一个高度复杂的时空变量,这是因为它容易受到非线性动力学过程和巨大时空变化的影响。特别是,由于跨越不同尺度的各种物理过程的复合效应,准确预报小尺度 SST 是一项艰巨的挑战。在本研究中,我们采用深度学习方法来挖掘海洋的演化模式,因为海洋的动态机制本质上蕴含在时空数据中。我们提出了分层堆叠时空自关注机制(HSSSA)网络架构。分层堆叠的编码器-解码器架构提供了在不同尺度上进行特征融合和提取的能力。空间自注意和时间自注意模块同时关注来自不同空间位置和时间步长的信息,从而能够探索海洋复杂动态中的时空模式。在高分辨率东海数据集(1/10°×1/10°)上进行了实验,以证明所提模型对精细海洋变量的预报性能。15 天的预报结果表明,HSSSA 方法优于 EOF-ARIMA 和 CNN-Transformer 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical stacked spatiotemporal self-attention network for sea surface temperature forecasting

Sea surface temperature (SST) is a highly complex spatiotemporal variable, which stems from its susceptibility to non-linear dynamical processes and substantial spatiotemporal variability. In particular, accurately forecasting small-scale SST is a formidable challenge due to the compounded effects of diverse physical processes spanning across various scales. In this study, we employ deep learning methods to mine the ocean’s evolutionary patterns, as the ocean’s dynamic mechanisms are inherently embedded in spatiotemporal data. We propose a hierarchical stacked spatiotemporal self-attention mechanism (HSSSA) network architecture. The hierarchical stacked encoder–decoder architecture provides the capability for feature fusion and extraction at different scales. The spatial self-attention and temporal self-attention modules simultaneously focus on information from different spatial locations and time steps, allowing the exploration of spatiotemporal patterns in the complex dynamics of the ocean. The experiments are conducted on a high-resolution East China Sea dataset (1/10°×1/10°) to demonstrate the forecast performance of the proposed model for refined ocean variables. The 15-day forecasts indicate that the HSSSA method outperforms the EOF-ARIMA and CNN-Transformer methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信