{"title":"基于拥挤局部搜索的多群体遗传算法用于模糊多目标供应链配置","authors":"Xin Zhang, Shaopeng Sun, Jian Yao, Wei Fang, Pengjiang Qian","doi":"10.1016/j.swevo.2024.101698","DOIUrl":null,"url":null,"abstract":"<div><p>Supply chain configuration is often fuzzy and involves multiple objectives in real-world scenarios, but existing researches lack the exploration in the fuzzy aspect. Therefore, this paper establishes a fuzzy multi-objective supply chain configuration problem model to minimize the lead time and product cost oriented towards real supply chain environments. To solve the fuzzy problem, the theories of membership and closeness degree in fuzzy mathematics are adopted, and a multi-population genetic algorithm (MPGA) with crowding-based local search method is proposed. The MPGA algorithm uses two populations for optimizing the two objectives separately and effectively, and is characterized by three main innovative aspects. Firstly, a radical-and-radial selection operator is designed to balance the convergence speed and diversity of population. In the early stage of the algorithm, two populations are both optimized towards the ideal knee point, and then are separately optimized towards the two ends of the Pareto front (PF). Secondly, an elitist crossover operator is devised to promote information exchange within two populations. Thirdly, a crowding-based local search is proposed to speed up convergence by improving the crowded solutions, and to enhance diversity by obtaining new solutions around the uncrowded ones. Comprehensive experiments are tested on a fuzzy dataset with different sizes, and the integral of the hypervolume of PF is used for the evaluation of the fuzzy PF. The results show that MPGA achieves the best performance over other comparative algorithms, especially on maximum spread metric, outperforming all others by an average of 39 % across all test instances.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101698"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-population genetic algorithm with crowding-based local search for fuzzy multi-objective supply chain configuration\",\"authors\":\"Xin Zhang, Shaopeng Sun, Jian Yao, Wei Fang, Pengjiang Qian\",\"doi\":\"10.1016/j.swevo.2024.101698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supply chain configuration is often fuzzy and involves multiple objectives in real-world scenarios, but existing researches lack the exploration in the fuzzy aspect. Therefore, this paper establishes a fuzzy multi-objective supply chain configuration problem model to minimize the lead time and product cost oriented towards real supply chain environments. To solve the fuzzy problem, the theories of membership and closeness degree in fuzzy mathematics are adopted, and a multi-population genetic algorithm (MPGA) with crowding-based local search method is proposed. The MPGA algorithm uses two populations for optimizing the two objectives separately and effectively, and is characterized by three main innovative aspects. Firstly, a radical-and-radial selection operator is designed to balance the convergence speed and diversity of population. In the early stage of the algorithm, two populations are both optimized towards the ideal knee point, and then are separately optimized towards the two ends of the Pareto front (PF). Secondly, an elitist crossover operator is devised to promote information exchange within two populations. Thirdly, a crowding-based local search is proposed to speed up convergence by improving the crowded solutions, and to enhance diversity by obtaining new solutions around the uncrowded ones. Comprehensive experiments are tested on a fuzzy dataset with different sizes, and the integral of the hypervolume of PF is used for the evaluation of the fuzzy PF. The results show that MPGA achieves the best performance over other comparative algorithms, especially on maximum spread metric, outperforming all others by an average of 39 % across all test instances.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101698\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002360\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002360","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-population genetic algorithm with crowding-based local search for fuzzy multi-objective supply chain configuration
Supply chain configuration is often fuzzy and involves multiple objectives in real-world scenarios, but existing researches lack the exploration in the fuzzy aspect. Therefore, this paper establishes a fuzzy multi-objective supply chain configuration problem model to minimize the lead time and product cost oriented towards real supply chain environments. To solve the fuzzy problem, the theories of membership and closeness degree in fuzzy mathematics are adopted, and a multi-population genetic algorithm (MPGA) with crowding-based local search method is proposed. The MPGA algorithm uses two populations for optimizing the two objectives separately and effectively, and is characterized by three main innovative aspects. Firstly, a radical-and-radial selection operator is designed to balance the convergence speed and diversity of population. In the early stage of the algorithm, two populations are both optimized towards the ideal knee point, and then are separately optimized towards the two ends of the Pareto front (PF). Secondly, an elitist crossover operator is devised to promote information exchange within two populations. Thirdly, a crowding-based local search is proposed to speed up convergence by improving the crowded solutions, and to enhance diversity by obtaining new solutions around the uncrowded ones. Comprehensive experiments are tested on a fuzzy dataset with different sizes, and the integral of the hypervolume of PF is used for the evaluation of the fuzzy PF. The results show that MPGA achieves the best performance over other comparative algorithms, especially on maximum spread metric, outperforming all others by an average of 39 % across all test instances.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.