Anja A. Joye , Marta Bogowicz , Janine Gote-Schniering , Thomas Frauenfelder , Matthias Guckenberger , Britta Maurer , Stephanie Tanadini-Lang , Hubert S. Gabryś
{"title":"用于系统性硬化症间质性肺病诊断和分期的片状减影和全胸计算机断层扫描放射组学:对比分析","authors":"Anja A. Joye , Marta Bogowicz , Janine Gote-Schniering , Thomas Frauenfelder , Matthias Guckenberger , Britta Maurer , Stephanie Tanadini-Lang , Hubert S. Gabryś","doi":"10.1016/j.ejro.2024.100596","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The purpose of this study was to evaluate the efficacy of radiomics derived from slice-reduced CT (srCT) scans versus full-chest CT (fcCT) for diagnosing and staging of interstitial lung disease (ILD) in systemic sclerosis (SSc), considering the potential to reduce radiation exposure.</p></div><div><h3>Material and methods</h3><p>The fcCT corresponded to a standard high-resolution full-chest CT whereas the srCT consisted of nine axial slices. 1451 radiomic features in two dimensions from srCT and 1375 features in three dimensions from fcCT scans were extracted from 166 SSc patients. The study included first- and second-order features from original and wavelet-transformed images. We assessed the predictive performance of quantitative CT (qCT)-based logistic regression (LR) models relying on preselected features and machine learning workflows involving LR and extra-trees classifiers with data-driven feature selection. The area under the receiver operating characteristic curve (AUC) was used to estimate model performance.</p></div><div><h3>Results</h3><p>The best models for diagnosis and staging ILD achieved AUC=0.85±0.08 and AUC=0.82±0.08 with srCT, and AUC=0.83±0.06 and AUC=0.76±0.08 with fcCT, respectively. srCT-based models showed slightly superior performance over fcCT-based models, particularly in 2D-radiomic analyses when interpolation resolution closely matched the original in-plane resolution. For diagnosis, the LR outperformed qCT-models, whereas for staging, the best results were obtained with a qCT-based model.</p></div><div><h3>Conclusions</h3><p>Radiomics from srCT is an effective and preferable alternative to fcCT for diagnosing and staging SSc-ILD. This approach not only enhances predictive accuracy but also minimizes radiation exposure risks, offering a promising avenue for improved treatment decision support in SSc-ILD management.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047724000510/pdfft?md5=d4f83a55c0d66a111429abfa78cf9995&pid=1-s2.0-S2352047724000510-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Radiomics on slice-reduced versus full-chest computed tomography for diagnosis and staging of interstitial lung disease in systemic sclerosis: A comparative analysis\",\"authors\":\"Anja A. Joye , Marta Bogowicz , Janine Gote-Schniering , Thomas Frauenfelder , Matthias Guckenberger , Britta Maurer , Stephanie Tanadini-Lang , Hubert S. Gabryś\",\"doi\":\"10.1016/j.ejro.2024.100596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>The purpose of this study was to evaluate the efficacy of radiomics derived from slice-reduced CT (srCT) scans versus full-chest CT (fcCT) for diagnosing and staging of interstitial lung disease (ILD) in systemic sclerosis (SSc), considering the potential to reduce radiation exposure.</p></div><div><h3>Material and methods</h3><p>The fcCT corresponded to a standard high-resolution full-chest CT whereas the srCT consisted of nine axial slices. 1451 radiomic features in two dimensions from srCT and 1375 features in three dimensions from fcCT scans were extracted from 166 SSc patients. The study included first- and second-order features from original and wavelet-transformed images. We assessed the predictive performance of quantitative CT (qCT)-based logistic regression (LR) models relying on preselected features and machine learning workflows involving LR and extra-trees classifiers with data-driven feature selection. The area under the receiver operating characteristic curve (AUC) was used to estimate model performance.</p></div><div><h3>Results</h3><p>The best models for diagnosis and staging ILD achieved AUC=0.85±0.08 and AUC=0.82±0.08 with srCT, and AUC=0.83±0.06 and AUC=0.76±0.08 with fcCT, respectively. srCT-based models showed slightly superior performance over fcCT-based models, particularly in 2D-radiomic analyses when interpolation resolution closely matched the original in-plane resolution. For diagnosis, the LR outperformed qCT-models, whereas for staging, the best results were obtained with a qCT-based model.</p></div><div><h3>Conclusions</h3><p>Radiomics from srCT is an effective and preferable alternative to fcCT for diagnosing and staging SSc-ILD. This approach not only enhances predictive accuracy but also minimizes radiation exposure risks, offering a promising avenue for improved treatment decision support in SSc-ILD management.</p></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000510/pdfft?md5=d4f83a55c0d66a111429abfa78cf9995&pid=1-s2.0-S2352047724000510-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Radiomics on slice-reduced versus full-chest computed tomography for diagnosis and staging of interstitial lung disease in systemic sclerosis: A comparative analysis
Purpose
The purpose of this study was to evaluate the efficacy of radiomics derived from slice-reduced CT (srCT) scans versus full-chest CT (fcCT) for diagnosing and staging of interstitial lung disease (ILD) in systemic sclerosis (SSc), considering the potential to reduce radiation exposure.
Material and methods
The fcCT corresponded to a standard high-resolution full-chest CT whereas the srCT consisted of nine axial slices. 1451 radiomic features in two dimensions from srCT and 1375 features in three dimensions from fcCT scans were extracted from 166 SSc patients. The study included first- and second-order features from original and wavelet-transformed images. We assessed the predictive performance of quantitative CT (qCT)-based logistic regression (LR) models relying on preselected features and machine learning workflows involving LR and extra-trees classifiers with data-driven feature selection. The area under the receiver operating characteristic curve (AUC) was used to estimate model performance.
Results
The best models for diagnosis and staging ILD achieved AUC=0.85±0.08 and AUC=0.82±0.08 with srCT, and AUC=0.83±0.06 and AUC=0.76±0.08 with fcCT, respectively. srCT-based models showed slightly superior performance over fcCT-based models, particularly in 2D-radiomic analyses when interpolation resolution closely matched the original in-plane resolution. For diagnosis, the LR outperformed qCT-models, whereas for staging, the best results were obtained with a qCT-based model.
Conclusions
Radiomics from srCT is an effective and preferable alternative to fcCT for diagnosing and staging SSc-ILD. This approach not only enhances predictive accuracy but also minimizes radiation exposure risks, offering a promising avenue for improved treatment decision support in SSc-ILD management.