镉诱导的金属失衡与镉响应转录激活子Yap1介导的金属平衡调控

IF 5.7 2区 生物学 Q1 MYCOLOGY
Lukman Iddrisu , Yongbin Li , Zhijia Fang , Lijun Sun , Zhiwei Huang
{"title":"镉诱导的金属失衡与镉响应转录激活子Yap1介导的金属平衡调控","authors":"Lukman Iddrisu ,&nbsp;Yongbin Li ,&nbsp;Zhijia Fang ,&nbsp;Lijun Sun ,&nbsp;Zhiwei Huang","doi":"10.1016/j.fbr.2024.100384","DOIUrl":null,"url":null,"abstract":"<div><p>The absorption of cadmium (Cd) initiates a sequence of detrimental effects or harm to organisms. The presence of Cd in <em>Saccharomyces cerevisiae</em> affects key metal import channels, leading to a disruption in the balance of metal ions inside the organism. <em>S. cerevisiae</em> has established metal homeostasis mechanisms in response to Cd stress, which regulates metal transporters located in the plasma and vacuole membranes. This review analyzes the maintenance of metal homeostasis in <em>S. cerevisiae</em> and its mechanism from three different perspectives: (1) the effects of Cd on metals, (2) the reaction of Yap1 with Cd, and (3) glutathione (GSH) regulates the homeostasis of Yap1 in relation to metal transporters. This helps us to understand how metal homeostasis is maintained in <em>S. cerevisiae</em> when exposed to Cd. The generally held belief is that the reaction to Cd poisoning is strongly linked to oxidative stress. This review will offer insights into new reaction pathways to Cd that are different from oxidative stress, specifically focusing on the Cd(GS)<sub>2</sub> complex.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"50 ","pages":"Article 100384"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cadmium-induced metal imbalance and cadmium-responsive transcriptional activator Yap1 mediated regulation of metal homeostasis\",\"authors\":\"Lukman Iddrisu ,&nbsp;Yongbin Li ,&nbsp;Zhijia Fang ,&nbsp;Lijun Sun ,&nbsp;Zhiwei Huang\",\"doi\":\"10.1016/j.fbr.2024.100384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The absorption of cadmium (Cd) initiates a sequence of detrimental effects or harm to organisms. The presence of Cd in <em>Saccharomyces cerevisiae</em> affects key metal import channels, leading to a disruption in the balance of metal ions inside the organism. <em>S. cerevisiae</em> has established metal homeostasis mechanisms in response to Cd stress, which regulates metal transporters located in the plasma and vacuole membranes. This review analyzes the maintenance of metal homeostasis in <em>S. cerevisiae</em> and its mechanism from three different perspectives: (1) the effects of Cd on metals, (2) the reaction of Yap1 with Cd, and (3) glutathione (GSH) regulates the homeostasis of Yap1 in relation to metal transporters. This helps us to understand how metal homeostasis is maintained in <em>S. cerevisiae</em> when exposed to Cd. The generally held belief is that the reaction to Cd poisoning is strongly linked to oxidative stress. This review will offer insights into new reaction pathways to Cd that are different from oxidative stress, specifically focusing on the Cd(GS)<sub>2</sub> complex.</p></div>\",\"PeriodicalId\":12563,\"journal\":{\"name\":\"Fungal Biology Reviews\",\"volume\":\"50 \",\"pages\":\"Article 100384\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749461324000290\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461324000290","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

镉(Cd)的吸收会对生物体产生一系列有害影响或危害。镉在酿酒酵母(Saccharomyces cerevisiae)中的存在会影响关键的金属导入通道,导致生物体内金属离子的平衡被打破。针对镉胁迫,酿酒酵母建立了金属平衡机制,调节位于质膜和液泡膜上的金属转运体。本综述从三个不同角度分析了麦角菌体内金属平衡的维持及其机制:(1)镉对金属的影响;(2)Yap1与镉的反应;(3)谷胱甘肽(GSH)调节Yap1与金属转运体的平衡关系。这有助于我们理解当暴露于镉时,葡萄孢菌是如何维持金属平衡的。人们普遍认为,镉中毒反应与氧化应激密切相关。本综述将深入探讨不同于氧化应激的新的镉反应途径,特别侧重于 Cd(GS)2 复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cadmium-induced metal imbalance and cadmium-responsive transcriptional activator Yap1 mediated regulation of metal homeostasis

Cadmium-induced metal imbalance and cadmium-responsive transcriptional activator Yap1 mediated regulation of metal homeostasis

The absorption of cadmium (Cd) initiates a sequence of detrimental effects or harm to organisms. The presence of Cd in Saccharomyces cerevisiae affects key metal import channels, leading to a disruption in the balance of metal ions inside the organism. S. cerevisiae has established metal homeostasis mechanisms in response to Cd stress, which regulates metal transporters located in the plasma and vacuole membranes. This review analyzes the maintenance of metal homeostasis in S. cerevisiae and its mechanism from three different perspectives: (1) the effects of Cd on metals, (2) the reaction of Yap1 with Cd, and (3) glutathione (GSH) regulates the homeostasis of Yap1 in relation to metal transporters. This helps us to understand how metal homeostasis is maintained in S. cerevisiae when exposed to Cd. The generally held belief is that the reaction to Cd poisoning is strongly linked to oxidative stress. This review will offer insights into new reaction pathways to Cd that are different from oxidative stress, specifically focusing on the Cd(GS)2 complex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.60
自引率
0.00%
发文量
36
期刊介绍: Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信