Yu-Jie Chen , Qiao Liu , Yong-Jing Zhang, Zhi-Li Jiang, Hai-Lan Fu, Hui Wu, Ming-Jie Liu, Ji-Hong Jiang, Lu-Dan Li
{"title":"铁皮石斛南枯病原真菌 Sclerotium delphinii 的全基因组序列","authors":"Yu-Jie Chen , Qiao Liu , Yong-Jing Zhang, Zhi-Li Jiang, Hai-Lan Fu, Hui Wu, Ming-Jie Liu, Ji-Hong Jiang, Lu-Dan Li","doi":"10.1016/j.ygeno.2024.110932","DOIUrl":null,"url":null,"abstract":"<div><p><em>Dendrobium officinale</em> is a rare and precious medicinal plant. Southern blight is a destructive disease in the artificial cultivation of <em>D. officinale</em>, and one of its pathogens is <em>Sclerotium delphinii</em>. <em>S. delphinii</em> is a phytopathogenic fungus with a wide host range with extremely strong pathogenicity. In this study, <em>S. delphinii</em> was isolated from <em>D. officinale</em> with southern blight. Subsequently, this specific strain underwent thorough whole-genome sequencing using the PacBio Sequel II platform, which employed single-molecule real-time (SMRT) technology. Comprehensive annotations were obtained through functional annotation of protein sequences using various publicly available databases. The genome of <em>S. delphinii</em> measures 73.66 Mb, with an N90 contig size of 2,707,110 bp, and it contains 18,506 putative predictive genes. This study represents the first report on the genome size assembly and annotation of <em>S. delphinii</em>, making it the initial species within the <em>Sclerotium</em> genus to undergo whole-genome sequencing, which can provide solid data and a theoretical basis for further research on the pathogenesis, omics of <em>S. delphinii</em>.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001538/pdfft?md5=bbf26dfea948a36db04297732ebddada&pid=1-s2.0-S0888754324001538-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Whole-genome sequence of Sclerotium delphinii, a pathogenic fungus of Dendrobium officinale southern blight\",\"authors\":\"Yu-Jie Chen , Qiao Liu , Yong-Jing Zhang, Zhi-Li Jiang, Hai-Lan Fu, Hui Wu, Ming-Jie Liu, Ji-Hong Jiang, Lu-Dan Li\",\"doi\":\"10.1016/j.ygeno.2024.110932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Dendrobium officinale</em> is a rare and precious medicinal plant. Southern blight is a destructive disease in the artificial cultivation of <em>D. officinale</em>, and one of its pathogens is <em>Sclerotium delphinii</em>. <em>S. delphinii</em> is a phytopathogenic fungus with a wide host range with extremely strong pathogenicity. In this study, <em>S. delphinii</em> was isolated from <em>D. officinale</em> with southern blight. Subsequently, this specific strain underwent thorough whole-genome sequencing using the PacBio Sequel II platform, which employed single-molecule real-time (SMRT) technology. Comprehensive annotations were obtained through functional annotation of protein sequences using various publicly available databases. The genome of <em>S. delphinii</em> measures 73.66 Mb, with an N90 contig size of 2,707,110 bp, and it contains 18,506 putative predictive genes. This study represents the first report on the genome size assembly and annotation of <em>S. delphinii</em>, making it the initial species within the <em>Sclerotium</em> genus to undergo whole-genome sequencing, which can provide solid data and a theoretical basis for further research on the pathogenesis, omics of <em>S. delphinii</em>.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001538/pdfft?md5=bbf26dfea948a36db04297732ebddada&pid=1-s2.0-S0888754324001538-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001538\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001538","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
铁皮石斛是一种稀有珍贵的药用植物。南枯病是人工栽培 officinale 铁皮石斛的一种毁灭性病害,其病原菌之一是 Sclerotium delphinii。S. delphinii 是一种植物病原真菌,寄主范围广,致病力极强。在这项研究中,S. delphinii是从患有南方枯萎病的 D. officinale 中分离出来的。随后,利用单分子实时(SMRT)技术,使用 PacBio Sequel II 平台对该特异菌株进行了全面的全基因组测序。通过使用各种公开数据库对蛋白质序列进行功能注释,获得了全面的注释。S. delphinii的基因组大小为73.66 Mb,N90等位基因大小为2,707,110 bp,包含18,506个推测性预测基因。该研究首次报道了S. delphinii的基因组大小组装和注释,使其成为硬核菌属中第一个进行全基因组测序的物种,可为进一步研究S. delphinii的致病机理和组学提供可靠的数据和理论依据。
Whole-genome sequence of Sclerotium delphinii, a pathogenic fungus of Dendrobium officinale southern blight
Dendrobium officinale is a rare and precious medicinal plant. Southern blight is a destructive disease in the artificial cultivation of D. officinale, and one of its pathogens is Sclerotium delphinii. S. delphinii is a phytopathogenic fungus with a wide host range with extremely strong pathogenicity. In this study, S. delphinii was isolated from D. officinale with southern blight. Subsequently, this specific strain underwent thorough whole-genome sequencing using the PacBio Sequel II platform, which employed single-molecule real-time (SMRT) technology. Comprehensive annotations were obtained through functional annotation of protein sequences using various publicly available databases. The genome of S. delphinii measures 73.66 Mb, with an N90 contig size of 2,707,110 bp, and it contains 18,506 putative predictive genes. This study represents the first report on the genome size assembly and annotation of S. delphinii, making it the initial species within the Sclerotium genus to undergo whole-genome sequencing, which can provide solid data and a theoretical basis for further research on the pathogenesis, omics of S. delphinii.