Rhodopirellula sp. P2 的基因组分析揭示了其在褐藻糖胶降解中的作用

IF 1.3 4区 生物学 Q4 GENETICS & HEREDITY
Chen Wang, Dan Liu, Hou-qi Wang, Yu-zhong Zhang, Peng Wang
{"title":"Rhodopirellula sp. P2 的基因组分析揭示了其在褐藻糖胶降解中的作用","authors":"Chen Wang,&nbsp;Dan Liu,&nbsp;Hou-qi Wang,&nbsp;Yu-zhong Zhang,&nbsp;Peng Wang","doi":"10.1016/j.margen.2024.101145","DOIUrl":null,"url":null,"abstract":"<div><p>Fucoidan, the main polysaccharide in various species of brown seaweed, has a high annual production. It is an important source of marine organic carbon and exhibits diverse biological activities and significant application potential. <em>Rhodopirellula</em> sp. P2, a novel marine bacterium of the phylum <em>Planctomycetota</em>, was isolated from intertidal algae samples collected from the Weihai coast, the Yellow Sea, China. The strain P2 is a Gram-negative, aerobic, and pear-shaped bacterium. Here, we report the complete genome sequence of <em>Rhodopirellula</em> sp. P2. The genome of strain P2 consists of a single circular chromosome with 7,291,416 bp and a GC content of 57.38 %, including 5462 protein-coding genes, 2 rRNA genes, and 48 tRNA genes. Genomic analysis revealed that strain P2 possessed 173 CAZymes and 106 sulfatases, indicating that strain P2 has the potential ability to utilize multiple polysaccharides, especially hydrolyze fucoidan to fucose. The genome of strain P2 also encodes a gene cluster related to bacterial microcompartment, suggesting the ability of strain P2 to metabolize fucose. These results enhance the understanding of the diversity and ecological functions of <em>Planctomycetota</em>, and also facilitate the exploitation of <em>Planctomycetota</em> and enzyme resources to utilize fucoidan. This study provides genetic insights into fucoidan catabolism by <em>Planctomycetota</em>, expanding our understanding of fucoidan-degrading microbial groups.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic analysis of Rhodopirellula sp. P2 reveals its role in fucoidan degradation\",\"authors\":\"Chen Wang,&nbsp;Dan Liu,&nbsp;Hou-qi Wang,&nbsp;Yu-zhong Zhang,&nbsp;Peng Wang\",\"doi\":\"10.1016/j.margen.2024.101145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fucoidan, the main polysaccharide in various species of brown seaweed, has a high annual production. It is an important source of marine organic carbon and exhibits diverse biological activities and significant application potential. <em>Rhodopirellula</em> sp. P2, a novel marine bacterium of the phylum <em>Planctomycetota</em>, was isolated from intertidal algae samples collected from the Weihai coast, the Yellow Sea, China. The strain P2 is a Gram-negative, aerobic, and pear-shaped bacterium. Here, we report the complete genome sequence of <em>Rhodopirellula</em> sp. P2. The genome of strain P2 consists of a single circular chromosome with 7,291,416 bp and a GC content of 57.38 %, including 5462 protein-coding genes, 2 rRNA genes, and 48 tRNA genes. Genomic analysis revealed that strain P2 possessed 173 CAZymes and 106 sulfatases, indicating that strain P2 has the potential ability to utilize multiple polysaccharides, especially hydrolyze fucoidan to fucose. The genome of strain P2 also encodes a gene cluster related to bacterial microcompartment, suggesting the ability of strain P2 to metabolize fucose. These results enhance the understanding of the diversity and ecological functions of <em>Planctomycetota</em>, and also facilitate the exploitation of <em>Planctomycetota</em> and enzyme resources to utilize fucoidan. This study provides genetic insights into fucoidan catabolism by <em>Planctomycetota</em>, expanding our understanding of fucoidan-degrading microbial groups.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778724000631\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778724000631","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

褐藻糖胶是各种褐藻中的主要多糖,年产量很高。它是海洋有机碳的重要来源,具有多种生物活性和巨大的应用潜力。从中国黄海威海沿岸采集的潮间带藻类样品中分离到了一种新型海洋细菌,即 Planctomycetota 门的 Rhodopirellula sp.菌株 P2 是一种革兰氏阴性、需氧的梨形细菌。我们在此报告 Rhodopirellula sp.菌株P2的基因组由一条单环染色体组成,长度为7,291,416 bp,GC含量为57.38%,包括5462个蛋白编码基因、2个rRNA基因和48个tRNA基因。基因组分析表明,菌株 P2 拥有 173 种 CAZymes 和 106 种硫酸酯酶,表明菌株 P2 具有利用多种多糖的潜在能力,特别是能将褐藻糖胶水解为岩藻糖。菌株P2的基因组还编码了一个与细菌微室相关的基因簇,表明菌株P2具有代谢岩藻糖的能力。这些结果加深了人们对 Planctomycetota 的多样性和生态功能的了解,同时也有助于利用 Planctomycetota 和酶资源来利用褐藻糖胶。这项研究为 Planctomycetota 分解褐藻糖胶提供了遗传学见解,拓展了我们对褐藻糖胶降解微生物群的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomic analysis of Rhodopirellula sp. P2 reveals its role in fucoidan degradation

Fucoidan, the main polysaccharide in various species of brown seaweed, has a high annual production. It is an important source of marine organic carbon and exhibits diverse biological activities and significant application potential. Rhodopirellula sp. P2, a novel marine bacterium of the phylum Planctomycetota, was isolated from intertidal algae samples collected from the Weihai coast, the Yellow Sea, China. The strain P2 is a Gram-negative, aerobic, and pear-shaped bacterium. Here, we report the complete genome sequence of Rhodopirellula sp. P2. The genome of strain P2 consists of a single circular chromosome with 7,291,416 bp and a GC content of 57.38 %, including 5462 protein-coding genes, 2 rRNA genes, and 48 tRNA genes. Genomic analysis revealed that strain P2 possessed 173 CAZymes and 106 sulfatases, indicating that strain P2 has the potential ability to utilize multiple polysaccharides, especially hydrolyze fucoidan to fucose. The genome of strain P2 also encodes a gene cluster related to bacterial microcompartment, suggesting the ability of strain P2 to metabolize fucose. These results enhance the understanding of the diversity and ecological functions of Planctomycetota, and also facilitate the exploitation of Planctomycetota and enzyme resources to utilize fucoidan. This study provides genetic insights into fucoidan catabolism by Planctomycetota, expanding our understanding of fucoidan-degrading microbial groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine genomics
Marine genomics 生物-遗传学
CiteScore
3.60
自引率
5.30%
发文量
50
审稿时长
29 days
期刊介绍: The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include: • Population genomics and ecology • Evolutionary and developmental genomics • Comparative genomics • Metagenomics • Environmental genomics • Systems biology More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信