Virasoro 型(超)代数上的反转泊松结构

IF 1.6 3区 数学 Q1 MATHEMATICS
Zixin Zeng , Jiancai Sun , Honglian Zhang
{"title":"Virasoro 型(超)代数上的反转泊松结构","authors":"Zixin Zeng ,&nbsp;Jiancai Sun ,&nbsp;Honglian Zhang","doi":"10.1016/j.geomphys.2024.105295","DOIUrl":null,"url":null,"abstract":"<div><p>We explore transposed Poisson structures on the Lie algebra: the deformed twisted Schrödinger-Virasoro algebra <span><math><mi>D</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, as well as two Lie superalgebras: the super-BMS<sub>3</sub> algebra and the twisted <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> Schrödinger-Neveu-Schwarz algebra. Initially, we demonstrate the absence of non-trivial transposed Poisson structures on the Lie algebra <span><math><mi>D</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> for <span><math><mi>λ</mi><mo>≠</mo><mn>1</mn></math></span> and provide an example of a transposed Poisson algebra with associative and Lie parts isomorphic to the algebra of triadic extended Laurent polynomials and <span><math><mi>D</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. Subsequently, we establish that the super-BMS<sub>3</sub> algebra possesses non-trivial <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-superderivations but lacks a non-trivial transposed Poisson structure. Finally, we prove that the twisted N=1 Schrödinger-Neveu-Schwarz algebra does not have non-trivial <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-superderivations and thus lacks non-trivial transposed Poisson structures.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transposed Poisson structures on Virasoro-type (super)algebras\",\"authors\":\"Zixin Zeng ,&nbsp;Jiancai Sun ,&nbsp;Honglian Zhang\",\"doi\":\"10.1016/j.geomphys.2024.105295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explore transposed Poisson structures on the Lie algebra: the deformed twisted Schrödinger-Virasoro algebra <span><math><mi>D</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, as well as two Lie superalgebras: the super-BMS<sub>3</sub> algebra and the twisted <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> Schrödinger-Neveu-Schwarz algebra. Initially, we demonstrate the absence of non-trivial transposed Poisson structures on the Lie algebra <span><math><mi>D</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> for <span><math><mi>λ</mi><mo>≠</mo><mn>1</mn></math></span> and provide an example of a transposed Poisson algebra with associative and Lie parts isomorphic to the algebra of triadic extended Laurent polynomials and <span><math><mi>D</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. Subsequently, we establish that the super-BMS<sub>3</sub> algebra possesses non-trivial <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-superderivations but lacks a non-trivial transposed Poisson structure. Finally, we prove that the twisted N=1 Schrödinger-Neveu-Schwarz algebra does not have non-trivial <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-superderivations and thus lacks non-trivial transposed Poisson structures.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001967\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001967","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了李代数上的转置泊松结构:变形扭曲薛定谔-维拉索罗代数 D(λ),以及两个李超次 代数:超 BMS3 代数和扭曲 N=1 薛定谔-奈维-施瓦茨代数。首先,我们证明了在λ≠1 的情况下,Lie 代数 D(λ)上不存在非难转置泊松结构,并举例说明了转置泊松代数的关联部分和 Lie 部分与三元扩展劳伦多项式代数和 D(1) 同构。随后,我们证明了超 BMS3 代数具有非三维的 12 超衍生,但缺乏非三维的转置泊松结构。最后,我们证明了扭曲的 N=1 薛定谔-奈维-施瓦茨代数不具有非对等的 12 次超阶乘,因此缺乏非对等的转置泊松结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transposed Poisson structures on Virasoro-type (super)algebras

We explore transposed Poisson structures on the Lie algebra: the deformed twisted Schrödinger-Virasoro algebra D(λ), as well as two Lie superalgebras: the super-BMS3 algebra and the twisted N=1 Schrödinger-Neveu-Schwarz algebra. Initially, we demonstrate the absence of non-trivial transposed Poisson structures on the Lie algebra D(λ) for λ1 and provide an example of a transposed Poisson algebra with associative and Lie parts isomorphic to the algebra of triadic extended Laurent polynomials and D(1). Subsequently, we establish that the super-BMS3 algebra possesses non-trivial 12-superderivations but lacks a non-trivial transposed Poisson structure. Finally, we prove that the twisted N=1 Schrödinger-Neveu-Schwarz algebra does not have non-trivial 12-superderivations and thus lacks non-trivial transposed Poisson structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信