希什金网格上奇异扰动对流扩散问题的双线性有限体积法分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Ying Sheng, Tie Zhang
{"title":"希什金网格上奇异扰动对流扩散问题的双线性有限体积法分析","authors":"Ying Sheng,&nbsp;Tie Zhang","doi":"10.1016/j.camwa.2024.08.023","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the bilinear finite volume element method for solving the singularly perturbed convection-diffusion problem on the Shishkin mesh. We first prove that the finite volume element scheme is <em>ϵ</em>-uniformly stable. Then, based on new expression of the finite volume bilinear form and some detailed integral calculations, an <em>ϵ</em>-uniform error estimation is derived in the <em>ϵ</em>-weighted gradient norm, including the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norm. This error estimate is better than the known result. Moreover, we also give the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-error estimate near the boundary layer regions. At last, numerical experiments show the effectiveness of our method.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of the bilinear finite volume method for the singularly-perturbed convection-diffusion problems on Shishkin mesh\",\"authors\":\"Ying Sheng,&nbsp;Tie Zhang\",\"doi\":\"10.1016/j.camwa.2024.08.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the bilinear finite volume element method for solving the singularly perturbed convection-diffusion problem on the Shishkin mesh. We first prove that the finite volume element scheme is <em>ϵ</em>-uniformly stable. Then, based on new expression of the finite volume bilinear form and some detailed integral calculations, an <em>ϵ</em>-uniform error estimation is derived in the <em>ϵ</em>-weighted gradient norm, including the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norm. This error estimate is better than the known result. Moreover, we also give the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-error estimate near the boundary layer regions. At last, numerical experiments show the effectiveness of our method.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003833\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003833","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在 Shishkin 网格上求解奇异扰动对流扩散问题的双线性有限体积元方法。我们首先证明有限体积元方案是ϵ均匀稳定的。然后,基于有限体积双线性形式的新表达式和一些详细的积分计算,在ϵ加权梯度规范(包括 L2 规范)中推导出了ϵ均匀误差估计。该误差估计结果优于已知结果。此外,我们还给出了边界层区域附近的 L∞ 误差估计值。最后,数值实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of the bilinear finite volume method for the singularly-perturbed convection-diffusion problems on Shishkin mesh

In this paper, we study the bilinear finite volume element method for solving the singularly perturbed convection-diffusion problem on the Shishkin mesh. We first prove that the finite volume element scheme is ϵ-uniformly stable. Then, based on new expression of the finite volume bilinear form and some detailed integral calculations, an ϵ-uniform error estimation is derived in the ϵ-weighted gradient norm, including the L2-norm. This error estimate is better than the known result. Moreover, we also give the L-error estimate near the boundary layer regions. At last, numerical experiments show the effectiveness of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信