基于电气数据和光伏场热成像的大型光伏系统能量预测和诊断模型

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
{"title":"基于电气数据和光伏场热成像的大型光伏系统能量预测和诊断模型","authors":"","doi":"10.1016/j.rser.2024.114858","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this investigation is the development of robust models for the performance prediction and automatic monitoring of large photovoltaic systems, based on historical and real-time electric and thermal data. This issue is increasingly important due to the worldwide diffusion of large photovoltaic systems and their need to identify and predict failures and malfunctions, in order to promptly assess the convenience of maintenance actions. The present model describes the response to irradiance and temperature conditions of both modules and inverters and also it is able to predict shading conditions able to affect the energy yield. The model has been validated against real electric measurements in 6 large PV plants located in southern Italy and it demonstrated to be able to predict the real time power production within a 4.1 % error. Even more importantly, the model and its comparison with subhourly measurements over several years has demonstrated its effectiveness in detecting downtime conditions caused by inverter or string problems. Simulations and measurements revealed that missed energy production due to electrical grid coupling downtime can exceed 50 % on certain days and that the shading conditions (up to 5 % of the daily energy production) can be easily detected and separated from component problems, thus avoiding false alarms. Finally, the analysis of aerial infrared images allowed to further test the model in failure detection capability, assess the relationship between thermal anomalies and underperformance conditions and in predicting the yearly deterioration rate at the PV plants.</p></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields\",\"authors\":\"\",\"doi\":\"10.1016/j.rser.2024.114858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this investigation is the development of robust models for the performance prediction and automatic monitoring of large photovoltaic systems, based on historical and real-time electric and thermal data. This issue is increasingly important due to the worldwide diffusion of large photovoltaic systems and their need to identify and predict failures and malfunctions, in order to promptly assess the convenience of maintenance actions. The present model describes the response to irradiance and temperature conditions of both modules and inverters and also it is able to predict shading conditions able to affect the energy yield. The model has been validated against real electric measurements in 6 large PV plants located in southern Italy and it demonstrated to be able to predict the real time power production within a 4.1 % error. Even more importantly, the model and its comparison with subhourly measurements over several years has demonstrated its effectiveness in detecting downtime conditions caused by inverter or string problems. Simulations and measurements revealed that missed energy production due to electrical grid coupling downtime can exceed 50 % on certain days and that the shading conditions (up to 5 % of the daily energy production) can be easily detected and separated from component problems, thus avoiding false alarms. Finally, the analysis of aerial infrared images allowed to further test the model in failure detection capability, assess the relationship between thermal anomalies and underperformance conditions and in predicting the yearly deterioration rate at the PV plants.</p></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124005847\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124005847","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的目的是根据历史和实时电热数据,为大型光伏系统的性能预测和自动监测开发稳健的模型。由于大型光伏系统在全球范围内的普及,以及需要识别和预测故障和失灵,以便及时评估维护行动的便利性,这个问题变得越来越重要。本模型描述了组件和逆变器对辐照度和温度条件的响应,还能预测影响发电量的遮阳条件。该模型已通过对意大利南部 6 个大型光伏电站的实际电力测量进行了验证,结果表明,该模型能够预测实时发电量,误差在 4.1% 以内。更重要的是,该模型及其与几年来每小时次测量结果的比较显示,该模型在检测逆变器或组串问题导致的停机条件方面非常有效。模拟和测量结果表明,电网耦合停机导致的漏发电量在某些日子会超过 50%,而遮光情况(最多占日发电量的 5%)可以很容易地检测出来,并与组件问题区分开来,从而避免误报。最后,通过对空中红外图像的分析,进一步检验了模型的故障检测能力,评估了热异常与性能不佳情况之间的关系,并预测了光伏电站的年损耗率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields

A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields

The aim of this investigation is the development of robust models for the performance prediction and automatic monitoring of large photovoltaic systems, based on historical and real-time electric and thermal data. This issue is increasingly important due to the worldwide diffusion of large photovoltaic systems and their need to identify and predict failures and malfunctions, in order to promptly assess the convenience of maintenance actions. The present model describes the response to irradiance and temperature conditions of both modules and inverters and also it is able to predict shading conditions able to affect the energy yield. The model has been validated against real electric measurements in 6 large PV plants located in southern Italy and it demonstrated to be able to predict the real time power production within a 4.1 % error. Even more importantly, the model and its comparison with subhourly measurements over several years has demonstrated its effectiveness in detecting downtime conditions caused by inverter or string problems. Simulations and measurements revealed that missed energy production due to electrical grid coupling downtime can exceed 50 % on certain days and that the shading conditions (up to 5 % of the daily energy production) can be easily detected and separated from component problems, thus avoiding false alarms. Finally, the analysis of aerial infrared images allowed to further test the model in failure detection capability, assess the relationship between thermal anomalies and underperformance conditions and in predicting the yearly deterioration rate at the PV plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信