基于 ESIPT 的 2-(苯并[d]噻唑-2-基)-4-(芘-1-基)苯酚向近红外区域的外部电场诱导发射行为

IF 4.3 2区 化学 Q1 SPECTROSCOPY
{"title":"基于 ESIPT 的 2-(苯并[d]噻唑-2-基)-4-(芘-1-基)苯酚向近红外区域的外部电场诱导发射行为","authors":"","doi":"10.1016/j.saa.2024.125045","DOIUrl":null,"url":null,"abstract":"<div><p>Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780–1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10<sup>-4</sup> a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"External electric field induced emission behavior for ESIPT-based 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol towards near-infrared region\",\"authors\":\"\",\"doi\":\"10.1016/j.saa.2024.125045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780–1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10<sup>-4</sup> a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.</p></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524012113\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524012113","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

有机发光二极管(OLED)可实现低能量转移和双发射,但目前调节 ESIPT 过程的方法主要是溶剂和取代基效应。本文利用密度理论泛函(DFT)和时间相关密度泛函理论(TD-DFT)方法,提出了由外部电场(EEF)控制的 ESIPT 过程,并研究了 2-(苯并[d]噻唑-2-基)-4-(吡喃-1-基)苯酚(PyHBT)的光物理性质变化。结构参数变化和红外振动光谱测量了 ESIPT 过程的先决条件,即分子内氢键(IHB)强度,扫描势能曲线(PECs)表明,随着正 EEF 的增加,PyHBT 的 ESIPT 过程更难进行,而负 EEF 则相反。吸收光谱和荧光光谱在不同的 EEF 下都会发生变化,甚至发射波长也会达到短波近红外(SW-NIR)区域(780-1100 nm),例如在酮形式的正 EEF 为 + 30 × 10-4 a.u. 时为 815.2 nm。此外,PyHBT 的荧光强度受到正 EEF 的强烈影响,尤其是在烯醇形式中,通过空穴电子分析对其机理的研究表明,在正 EEF 下,分子内电荷转移(TICT)过程被诱导,从而引发荧光强度的减弱。总之,我们的工作不仅补充了调控 ESIPT 过程的理论方法,而且揭示了受外电场影响的材料的光物理性质甚至有望达到近红外区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

External electric field induced emission behavior for ESIPT-based 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol towards near-infrared region

External electric field induced emission behavior for ESIPT-based 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol towards near-infrared region

Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780–1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10-4 a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信