用图卷积网络逼近抽象论证中的问题

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lars Malmqvist, Tangming Yuan, Peter Nightingale
{"title":"用图卷积网络逼近抽象论证中的问题","authors":"Lars Malmqvist,&nbsp;Tangming Yuan,&nbsp;Peter Nightingale","doi":"10.1016/j.artint.2024.104209","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a novel approximation approach for abstract argumentation using a customized Graph Convolutional Network (GCN) architecture and a tailored training method. Our approach demonstrates promising results in approximating abstract argumentation tasks across various semantics, setting a new state of the art for performance on certain tasks. We provide a detailed analysis of approximation and runtime performance and propose a new scheme for evaluation. By advancing the state of the art for approximating the acceptability status of abstract arguments, we make theoretical and empirical advances in understanding the limits and opportunities for approximation in this field. Our approach shows potential for creating both general purpose and task-specific approximators and offers insights into the performance differences across benchmarks and semantics.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"336 ","pages":"Article 104209"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0004370224001450/pdfft?md5=01068bd413e8769bb4469a717c95128e&pid=1-s2.0-S0004370224001450-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximating problems in abstract argumentation with graph convolutional networks\",\"authors\":\"Lars Malmqvist,&nbsp;Tangming Yuan,&nbsp;Peter Nightingale\",\"doi\":\"10.1016/j.artint.2024.104209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we present a novel approximation approach for abstract argumentation using a customized Graph Convolutional Network (GCN) architecture and a tailored training method. Our approach demonstrates promising results in approximating abstract argumentation tasks across various semantics, setting a new state of the art for performance on certain tasks. We provide a detailed analysis of approximation and runtime performance and propose a new scheme for evaluation. By advancing the state of the art for approximating the acceptability status of abstract arguments, we make theoretical and empirical advances in understanding the limits and opportunities for approximation in this field. Our approach shows potential for creating both general purpose and task-specific approximators and offers insights into the performance differences across benchmarks and semantics.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"336 \",\"pages\":\"Article 104209\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001450/pdfft?md5=01068bd413e8769bb4469a717c95128e&pid=1-s2.0-S0004370224001450-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001450\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001450","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种新颖的抽象论证近似方法,该方法使用定制的图卷积网络(GCN)架构和定制的训练方法。我们的方法在近似各种语义的抽象论证任务方面取得了可喜的成果,为某些任务的性能设定了新的技术水平。我们对近似和运行时性能进行了详细分析,并提出了一种新的评估方案。通过提升近似抽象论证可接受性状态的技术水平,我们在理解该领域近似的限制和机会方面取得了理论和经验上的进步。我们的方法显示了创建通用近似器和特定任务近似器的潜力,并提供了对不同基准和语义的性能差异的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating problems in abstract argumentation with graph convolutional networks

In this article, we present a novel approximation approach for abstract argumentation using a customized Graph Convolutional Network (GCN) architecture and a tailored training method. Our approach demonstrates promising results in approximating abstract argumentation tasks across various semantics, setting a new state of the art for performance on certain tasks. We provide a detailed analysis of approximation and runtime performance and propose a new scheme for evaluation. By advancing the state of the art for approximating the acceptability status of abstract arguments, we make theoretical and empirical advances in understanding the limits and opportunities for approximation in this field. Our approach shows potential for creating both general purpose and task-specific approximators and offers insights into the performance differences across benchmarks and semantics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信