{"title":"用图卷积网络逼近抽象论证中的问题","authors":"Lars Malmqvist, Tangming Yuan, Peter Nightingale","doi":"10.1016/j.artint.2024.104209","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a novel approximation approach for abstract argumentation using a customized Graph Convolutional Network (GCN) architecture and a tailored training method. Our approach demonstrates promising results in approximating abstract argumentation tasks across various semantics, setting a new state of the art for performance on certain tasks. We provide a detailed analysis of approximation and runtime performance and propose a new scheme for evaluation. By advancing the state of the art for approximating the acceptability status of abstract arguments, we make theoretical and empirical advances in understanding the limits and opportunities for approximation in this field. Our approach shows potential for creating both general purpose and task-specific approximators and offers insights into the performance differences across benchmarks and semantics.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"336 ","pages":"Article 104209"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0004370224001450/pdfft?md5=01068bd413e8769bb4469a717c95128e&pid=1-s2.0-S0004370224001450-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximating problems in abstract argumentation with graph convolutional networks\",\"authors\":\"Lars Malmqvist, Tangming Yuan, Peter Nightingale\",\"doi\":\"10.1016/j.artint.2024.104209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we present a novel approximation approach for abstract argumentation using a customized Graph Convolutional Network (GCN) architecture and a tailored training method. Our approach demonstrates promising results in approximating abstract argumentation tasks across various semantics, setting a new state of the art for performance on certain tasks. We provide a detailed analysis of approximation and runtime performance and propose a new scheme for evaluation. By advancing the state of the art for approximating the acceptability status of abstract arguments, we make theoretical and empirical advances in understanding the limits and opportunities for approximation in this field. Our approach shows potential for creating both general purpose and task-specific approximators and offers insights into the performance differences across benchmarks and semantics.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"336 \",\"pages\":\"Article 104209\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001450/pdfft?md5=01068bd413e8769bb4469a717c95128e&pid=1-s2.0-S0004370224001450-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001450\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001450","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Approximating problems in abstract argumentation with graph convolutional networks
In this article, we present a novel approximation approach for abstract argumentation using a customized Graph Convolutional Network (GCN) architecture and a tailored training method. Our approach demonstrates promising results in approximating abstract argumentation tasks across various semantics, setting a new state of the art for performance on certain tasks. We provide a detailed analysis of approximation and runtime performance and propose a new scheme for evaluation. By advancing the state of the art for approximating the acceptability status of abstract arguments, we make theoretical and empirical advances in understanding the limits and opportunities for approximation in this field. Our approach shows potential for creating both general purpose and task-specific approximators and offers insights into the performance differences across benchmarks and semantics.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.