具有新型铁磁特性的单晶 HfO2 纳米结构

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahdi Beedel, Md Anisur Rahman, Hanieh Farkhondeh, Joseph Palathinkal Thomas, Lei Zhang, Nina F. Heinig, Kam Tong Leung
{"title":"具有新型铁磁特性的单晶 HfO2 纳米结构","authors":"Mahdi Beedel,&nbsp;Md Anisur Rahman,&nbsp;Hanieh Farkhondeh,&nbsp;Joseph Palathinkal Thomas,&nbsp;Lei Zhang,&nbsp;Nina F. Heinig,&nbsp;Kam Tong Leung","doi":"10.1016/j.mtnano.2024.100510","DOIUrl":null,"url":null,"abstract":"<div><p>Hafnium oxide (HfO<sub>2</sub>) has special technological significance due to its superior properties such as high dielectric constant (κ∼25), wide bandgap (∼5.7 eV), and superb thermal and chemical stabilities. Its room-temperature ferromagnetism and excellent CMOS technology compatibility make it a promising candidate for seamless CMOS-spintronics integration. Low-dimensional single-crystalline HfO<sub>2</sub> nanostructures, particularly one dimensional (1D) nanostructures, are expected to exhibit enhanced ferromagnetic properties due to large specific surface areas and potentially more surface defects. To date, the synthesis of single-crystalline HfO<sub>2</sub> 1D nanostructures has, however, remained elusive. Here, single-crystalline dopant-free HfO<sub>2</sub> nanostructures with notable morphologies, including HfO<sub>2</sub> 1D nanostructures, are grown using catalyst-assisted pulsed laser deposition. It is shown that Sn plays a crucial role in producing these 1D nanostructures by increasing both the VLS nucleation and growth rates. Magnetization measurements reveal room-temperature ferromagnetism in HfO<sub>2</sub> nanowires, contrasting with weak paramagnetic responses in HfO<sub>2</sub> nanostructured films. We also provide the first direct evidence of oxygen vacancies as the source of room-temperature ferromagnetism in HfO<sub>2</sub>. To account for the observed magnetic property, we employ a modified bound magnetic polaron-band ferromagnetism hybrid model, which is also generally applicable to dopant-free nanostructures of other metal oxides. This work provides new insights into the growth of novel metal oxide 1D nanostructures and the design of new dilute magnetic semiconducting oxides for potential integrated CMOS-spintronics applications.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100510"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588842024000609/pdfft?md5=825b7e15cecafb3f325d98e947f83581&pid=1-s2.0-S2588842024000609-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Single-crystalline HfO2 nanostructures with novel ferromagnetic properties\",\"authors\":\"Mahdi Beedel,&nbsp;Md Anisur Rahman,&nbsp;Hanieh Farkhondeh,&nbsp;Joseph Palathinkal Thomas,&nbsp;Lei Zhang,&nbsp;Nina F. Heinig,&nbsp;Kam Tong Leung\",\"doi\":\"10.1016/j.mtnano.2024.100510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hafnium oxide (HfO<sub>2</sub>) has special technological significance due to its superior properties such as high dielectric constant (κ∼25), wide bandgap (∼5.7 eV), and superb thermal and chemical stabilities. Its room-temperature ferromagnetism and excellent CMOS technology compatibility make it a promising candidate for seamless CMOS-spintronics integration. Low-dimensional single-crystalline HfO<sub>2</sub> nanostructures, particularly one dimensional (1D) nanostructures, are expected to exhibit enhanced ferromagnetic properties due to large specific surface areas and potentially more surface defects. To date, the synthesis of single-crystalline HfO<sub>2</sub> 1D nanostructures has, however, remained elusive. Here, single-crystalline dopant-free HfO<sub>2</sub> nanostructures with notable morphologies, including HfO<sub>2</sub> 1D nanostructures, are grown using catalyst-assisted pulsed laser deposition. It is shown that Sn plays a crucial role in producing these 1D nanostructures by increasing both the VLS nucleation and growth rates. Magnetization measurements reveal room-temperature ferromagnetism in HfO<sub>2</sub> nanowires, contrasting with weak paramagnetic responses in HfO<sub>2</sub> nanostructured films. We also provide the first direct evidence of oxygen vacancies as the source of room-temperature ferromagnetism in HfO<sub>2</sub>. To account for the observed magnetic property, we employ a modified bound magnetic polaron-band ferromagnetism hybrid model, which is also generally applicable to dopant-free nanostructures of other metal oxides. This work provides new insights into the growth of novel metal oxide 1D nanostructures and the design of new dilute magnetic semiconducting oxides for potential integrated CMOS-spintronics applications.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"28 \",\"pages\":\"Article 100510\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000609/pdfft?md5=825b7e15cecafb3f325d98e947f83581&pid=1-s2.0-S2588842024000609-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000609\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000609","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化铪(HfO2)具有高介电常数(κ∼25)、宽带隙(∼5.7 eV)以及极佳的热稳定性和化学稳定性等优越性能,因而具有特殊的技术意义。其室温铁磁性和出色的 CMOS 技术兼容性使其成为 CMOS 与自旋电子学无缝集成的理想候选材料。低维单晶 HfO2 纳米结构,尤其是一维(1D)纳米结构,由于具有较大的比表面积和潜在的更多表面缺陷,有望表现出更强的铁磁特性。然而,迄今为止,单晶 HfO2 一维纳米结构的合成仍然遥遥无期。本文利用催化剂辅助脉冲激光沉积法生长出了具有显著形态的单晶无掺杂 HfO2 纳米结构,包括 HfO2 1D 纳米结构。研究表明,锡通过提高 VLS 成核率和生长率,在生成这些 1D 纳米结构方面发挥了关键作用。磁化测量揭示了二氧化铪纳米线的室温铁磁性,与二氧化铪纳米结构薄膜中微弱的顺磁反应形成鲜明对比。我们还首次直接证明氧空位是二氧化铪室温铁磁性的来源。为了解释观察到的磁性,我们采用了改进的束缚磁极子带铁磁性混合模型,该模型也普遍适用于其他金属氧化物的无掺杂纳米结构。这项工作为新型金属氧化物一维纳米结构的生长和新型稀磁半导体氧化物的设计提供了新的见解,从而为潜在的集成 CMOS-自旋电子学应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-crystalline HfO2 nanostructures with novel ferromagnetic properties

Single-crystalline HfO2 nanostructures with novel ferromagnetic properties

Hafnium oxide (HfO2) has special technological significance due to its superior properties such as high dielectric constant (κ∼25), wide bandgap (∼5.7 eV), and superb thermal and chemical stabilities. Its room-temperature ferromagnetism and excellent CMOS technology compatibility make it a promising candidate for seamless CMOS-spintronics integration. Low-dimensional single-crystalline HfO2 nanostructures, particularly one dimensional (1D) nanostructures, are expected to exhibit enhanced ferromagnetic properties due to large specific surface areas and potentially more surface defects. To date, the synthesis of single-crystalline HfO2 1D nanostructures has, however, remained elusive. Here, single-crystalline dopant-free HfO2 nanostructures with notable morphologies, including HfO2 1D nanostructures, are grown using catalyst-assisted pulsed laser deposition. It is shown that Sn plays a crucial role in producing these 1D nanostructures by increasing both the VLS nucleation and growth rates. Magnetization measurements reveal room-temperature ferromagnetism in HfO2 nanowires, contrasting with weak paramagnetic responses in HfO2 nanostructured films. We also provide the first direct evidence of oxygen vacancies as the source of room-temperature ferromagnetism in HfO2. To account for the observed magnetic property, we employ a modified bound magnetic polaron-band ferromagnetism hybrid model, which is also generally applicable to dopant-free nanostructures of other metal oxides. This work provides new insights into the growth of novel metal oxide 1D nanostructures and the design of new dilute magnetic semiconducting oxides for potential integrated CMOS-spintronics applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信