Nguyen Van Quang , Nguyen Van Huan , Phan Tri Kien
{"title":"m 正交随机变量随机和的极限定理收敛率","authors":"Nguyen Van Quang , Nguyen Van Huan , Phan Tri Kien","doi":"10.1016/j.spl.2024.110248","DOIUrl":null,"url":null,"abstract":"<div><p>In the paper, upper bounds for the convergence rate in the limit theorems for random sums of <span><math><mi>m</mi></math></span>-orthogonal random variables are estimated using the <span><math><mi>K</mi></math></span>-functional method. Our results are extensions of some known results related to random sums.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002177/pdfft?md5=17cb1a5fa9a3d66cea519756810bb9b4&pid=1-s2.0-S0167715224002177-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Convergence rates in the limit theorems for random sums of m-orthogonal random variables\",\"authors\":\"Nguyen Van Quang , Nguyen Van Huan , Phan Tri Kien\",\"doi\":\"10.1016/j.spl.2024.110248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the paper, upper bounds for the convergence rate in the limit theorems for random sums of <span><math><mi>m</mi></math></span>-orthogonal random variables are estimated using the <span><math><mi>K</mi></math></span>-functional method. Our results are extensions of some known results related to random sums.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002177/pdfft?md5=17cb1a5fa9a3d66cea519756810bb9b4&pid=1-s2.0-S0167715224002177-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文使用 K 函数方法估算了 m 个正交随机变量随机和的极限定理收敛率上限。我们的结果是对一些与随机和相关的已知结果的扩展。
Convergence rates in the limit theorems for random sums of m-orthogonal random variables
In the paper, upper bounds for the convergence rate in the limit theorems for random sums of -orthogonal random variables are estimated using the -functional method. Our results are extensions of some known results related to random sums.