揭示 MMV676501、MMV687807 和 MMV102872 对金黄色葡萄球菌的抗菌作用:机理研究

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"揭示 MMV676501、MMV687807 和 MMV102872 对金黄色葡萄球菌的抗菌作用:机理研究","authors":"","doi":"10.1016/j.crbiot.2024.100245","DOIUrl":null,"url":null,"abstract":"<div><p>The urgent need for new antimicrobials combats the rising threat of resistant pathogens. To optimize lead compounds, understanding their mechanisms of action is crucial for target optimization and improved pharmacokinetics. We employed microarray analysis to investigate the impact of selected MMV compounds on the <em>S. aureus</em> transcriptome. Differential gene expression (DEG) analysis was performed following exposure to MMV 676501, MMV 687807, and MMV 102872. MMV 676501 treatment resulted in 26 DEGs (12 upregulated, 14 downregulated). Similarly, MMV 687807 and MMV 102872 treatments yielded 34 DEGs (11 upregulated, 23 downregulated) and 31 DEGs (18 upregulated, 13 downregulated), respectively. Pathway analysis revealed that MMV 676501 targets nitrogen metabolism, while MMV 102872 downregulates genes (<em>purS, purC, lexA</em>) involved in purine metabolism. MMV 687807 appears to affect multiple metabolic pathways. Our transcriptomic approach demonstrates the differential impact of MMV compounds on <em>S. aureus</em>. These results provide mechanistic insights, highlighting specific metabolic pathways affected by each compound. This knowledge is valuable for guiding future target optimization and improving the compounds’ pharmacological properties.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000716/pdfft?md5=b37b9b54afb415df37c2b390f7ef6f9b&pid=1-s2.0-S2590262824000716-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling the antimicrobial action of MMV676501, MMV687807, and MMV102872 against Staphylococcus aureus: A mechanistic investigation\",\"authors\":\"\",\"doi\":\"10.1016/j.crbiot.2024.100245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The urgent need for new antimicrobials combats the rising threat of resistant pathogens. To optimize lead compounds, understanding their mechanisms of action is crucial for target optimization and improved pharmacokinetics. We employed microarray analysis to investigate the impact of selected MMV compounds on the <em>S. aureus</em> transcriptome. Differential gene expression (DEG) analysis was performed following exposure to MMV 676501, MMV 687807, and MMV 102872. MMV 676501 treatment resulted in 26 DEGs (12 upregulated, 14 downregulated). Similarly, MMV 687807 and MMV 102872 treatments yielded 34 DEGs (11 upregulated, 23 downregulated) and 31 DEGs (18 upregulated, 13 downregulated), respectively. Pathway analysis revealed that MMV 676501 targets nitrogen metabolism, while MMV 102872 downregulates genes (<em>purS, purC, lexA</em>) involved in purine metabolism. MMV 687807 appears to affect multiple metabolic pathways. Our transcriptomic approach demonstrates the differential impact of MMV compounds on <em>S. aureus</em>. These results provide mechanistic insights, highlighting specific metabolic pathways affected by each compound. This knowledge is valuable for guiding future target optimization and improving the compounds’ pharmacological properties.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000716/pdfft?md5=b37b9b54afb415df37c2b390f7ef6f9b&pid=1-s2.0-S2590262824000716-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为应对抗药性病原体不断增加的威胁,迫切需要新的抗菌药物。要优化先导化合物,了解其作用机制对于优化靶点和改善药代动力学至关重要。我们采用微阵列分析来研究选定的 MMV 化合物对金黄色葡萄球菌转录组的影响。在接触 MMV 676501、MMV 687807 和 MMV 102872 后进行了差异基因表达 (DEG) 分析。MMV 676501 处理导致 26 个 DEGs(12 个上调,14 个下调)。同样,MMV 687807 和 MMV 102872 处理分别产生了 34 个 DEGs(11 个上调,23 个下调)和 31 个 DEGs(18 个上调,13 个下调)。通路分析表明,MMV 676501 以氮代谢为目标,而 MMV 102872 则下调参与嘌呤代谢的基因(purS、purC、lexA)。MMV 687807 似乎会影响多种代谢途径。我们的转录组学方法证明了 MMV 复合物对金黄色葡萄球菌的不同影响。这些结果提供了机理上的见解,突出了受每种化合物影响的特定代谢途径。这些知识对于指导未来的靶点优化和改善化合物的药理特性非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the antimicrobial action of MMV676501, MMV687807, and MMV102872 against Staphylococcus aureus: A mechanistic investigation

Unveiling the antimicrobial action of MMV676501, MMV687807, and MMV102872 against Staphylococcus aureus: A mechanistic investigation

The urgent need for new antimicrobials combats the rising threat of resistant pathogens. To optimize lead compounds, understanding their mechanisms of action is crucial for target optimization and improved pharmacokinetics. We employed microarray analysis to investigate the impact of selected MMV compounds on the S. aureus transcriptome. Differential gene expression (DEG) analysis was performed following exposure to MMV 676501, MMV 687807, and MMV 102872. MMV 676501 treatment resulted in 26 DEGs (12 upregulated, 14 downregulated). Similarly, MMV 687807 and MMV 102872 treatments yielded 34 DEGs (11 upregulated, 23 downregulated) and 31 DEGs (18 upregulated, 13 downregulated), respectively. Pathway analysis revealed that MMV 676501 targets nitrogen metabolism, while MMV 102872 downregulates genes (purS, purC, lexA) involved in purine metabolism. MMV 687807 appears to affect multiple metabolic pathways. Our transcriptomic approach demonstrates the differential impact of MMV compounds on S. aureus. These results provide mechanistic insights, highlighting specific metabolic pathways affected by each compound. This knowledge is valuable for guiding future target optimization and improving the compounds’ pharmacological properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信