Dejian Li , Jie Gan , Chongfei Shen , Qi Chen , Lixin Yang , Sihai Qiu , Xin Jin , Tiantian Wu , Zhijie Chen , Meng Liu
{"title":"通过考虑物理参数的动态编程合成时钟网格","authors":"Dejian Li , Jie Gan , Chongfei Shen , Qi Chen , Lixin Yang , Sihai Qiu , Xin Jin , Tiantian Wu , Zhijie Chen , Meng Liu","doi":"10.1016/j.vlsi.2024.102261","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the evolving technological landscape, the traditional clock network architecture faces challenges in meeting the complexities of modern System-on-Chip (SoC) designs. While the clock mesh topology offers resilience against On-Chip Variation (OCV) fluctuations, its manual implementation leaves room for advancements in methodology and swift analytical techniques. This paper introduces an innovative clock mesh synthesis approach, leveraging dynamic programming algorithms and emphasizing compliance with critical physical implementation parameters. Our experimental results demonstrate a significant 26.6% reduction in power consumption compared to baseline methodologies. Moreover, it achieves an impressive average runtime reduction of 78.0% when contrasted with traditional simulation methods. These findings underscore the potential of our methodology to enhance the efficiency and power management of clock mesh designs.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102261"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clock mesh synthesis through dynamic programming with physical parameters consideration\",\"authors\":\"Dejian Li , Jie Gan , Chongfei Shen , Qi Chen , Lixin Yang , Sihai Qiu , Xin Jin , Tiantian Wu , Zhijie Chen , Meng Liu\",\"doi\":\"10.1016/j.vlsi.2024.102261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the evolving technological landscape, the traditional clock network architecture faces challenges in meeting the complexities of modern System-on-Chip (SoC) designs. While the clock mesh topology offers resilience against On-Chip Variation (OCV) fluctuations, its manual implementation leaves room for advancements in methodology and swift analytical techniques. This paper introduces an innovative clock mesh synthesis approach, leveraging dynamic programming algorithms and emphasizing compliance with critical physical implementation parameters. Our experimental results demonstrate a significant 26.6% reduction in power consumption compared to baseline methodologies. Moreover, it achieves an impressive average runtime reduction of 78.0% when contrasted with traditional simulation methods. These findings underscore the potential of our methodology to enhance the efficiency and power management of clock mesh designs.</p></div>\",\"PeriodicalId\":54973,\"journal\":{\"name\":\"Integration-The Vlsi Journal\",\"volume\":\"100 \",\"pages\":\"Article 102261\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integration-The Vlsi Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167926024001251\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001251","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Clock mesh synthesis through dynamic programming with physical parameters consideration
In response to the evolving technological landscape, the traditional clock network architecture faces challenges in meeting the complexities of modern System-on-Chip (SoC) designs. While the clock mesh topology offers resilience against On-Chip Variation (OCV) fluctuations, its manual implementation leaves room for advancements in methodology and swift analytical techniques. This paper introduces an innovative clock mesh synthesis approach, leveraging dynamic programming algorithms and emphasizing compliance with critical physical implementation parameters. Our experimental results demonstrate a significant 26.6% reduction in power consumption compared to baseline methodologies. Moreover, it achieves an impressive average runtime reduction of 78.0% when contrasted with traditional simulation methods. These findings underscore the potential of our methodology to enhance the efficiency and power management of clock mesh designs.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.