无限可分度量的可链性

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Shaul K. Bar-Lev , Gérard Letac
{"title":"无限可分度量的可链性","authors":"Shaul K. Bar-Lev ,&nbsp;Gérard Letac","doi":"10.1016/j.spl.2024.110256","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a positive measure on <span><math><mi>R</mi></math></span> with Laplace transform <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> defined on a set whose interior <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is nonempty and let <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mo>log</mo><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></mrow></math></span> be its cumulant transform. Then <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely divisible iff <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. If also <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is infinitely divisible, then <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and so forth, until we reach a <span><math><mi>k</mi></math></span> such that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not infinitely divisible. If such a <span><math><mi>k</mi></math></span> does not exist, we say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable. We say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable of order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> if it is infinitely chainable and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the smallest <span><math><mi>k</mi></math></span> for which <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>.</mo></mrow></math></span> In this note, we prove that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> iff <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.</p></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"216 ","pages":"Article 110256"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002256/pdfft?md5=07337618e4ae45b99cc48ba49eb461e1&pid=1-s2.0-S0167715224002256-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chainability of infinitely divisible measures\",\"authors\":\"Shaul K. Bar-Lev ,&nbsp;Gérard Letac\",\"doi\":\"10.1016/j.spl.2024.110256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a positive measure on <span><math><mi>R</mi></math></span> with Laplace transform <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> defined on a set whose interior <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is nonempty and let <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mo>log</mo><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></mrow></math></span> be its cumulant transform. Then <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely divisible iff <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. If also <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is infinitely divisible, then <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and so forth, until we reach a <span><math><mi>k</mi></math></span> such that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not infinitely divisible. If such a <span><math><mi>k</mi></math></span> does not exist, we say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable. We say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable of order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> if it is infinitely chainable and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the smallest <span><math><mi>k</mi></math></span> for which <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>.</mo></mrow></math></span> In this note, we prove that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> iff <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.</p></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"216 \",\"pages\":\"Article 110256\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002256/pdfft?md5=07337618e4ae45b99cc48ba49eb461e1&pid=1-s2.0-S0167715224002256-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002256\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002256","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

设 ρ0 是 R 上的正量度,其拉普拉斯变换 Lρ0(θ) 定义在一个内部 Θ(ρ0) 非空的集合上,并设 kρ0=logLρ0 为其累积变换。如果 kρ0′′ 是某个正量度 ρ1 的拉普拉斯变换,那么 ρ0 是无限可分的。如果 ρ1 也是无限可分的,那么 kρ1′′ 就是某个正量度 ρ2 的拉普拉斯变换,以此类推,直到我们找到一个 k,使得 ρk 不是无限可分的。如果这样的 k 不存在,我们就说ρ0 是无限可链的。如果 ρ0 是无限可链的,并且 k0 是 ρk=ρk+1 的最小 k,那么我们说 ρ0 是阶 k0 的无限可链。在本论文中,我们将证明,如果 ρk0 属于伽玛类、双曲类或负二项式类中的一类,则 ρ0 是阶 k0 的无限可链式,这是一个有点令人惊讶的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chainability of infinitely divisible measures

Let ρ0 be a positive measure on R with Laplace transform Lρ0(θ) defined on a set whose interior Θ(ρ0) is nonempty and let kρ0=logLρ0 be its cumulant transform. Then ρ0 is infinitely divisible iff kρ0 is a Laplace transform of some positive measure ρ1. If also ρ1 is infinitely divisible, then kρ1 is a Laplace transform of some positive measure ρ2 and so forth, until we reach a k such that ρk is not infinitely divisible. If such a k does not exist, we say that ρ0 is infinitely chainable. We say that ρ0 is infinitely chainable of order k0 if it is infinitely chainable and k0 is the smallest k for which ρk=ρk+1. In this note, we prove that ρ0 is infinitely chainable order k0 iff ρk0 falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信