{"title":"无限可分度量的可链性","authors":"Shaul K. Bar-Lev , Gérard Letac","doi":"10.1016/j.spl.2024.110256","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a positive measure on <span><math><mi>R</mi></math></span> with Laplace transform <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> defined on a set whose interior <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is nonempty and let <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mo>log</mo><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></mrow></math></span> be its cumulant transform. Then <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely divisible iff <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. If also <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is infinitely divisible, then <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and so forth, until we reach a <span><math><mi>k</mi></math></span> such that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not infinitely divisible. If such a <span><math><mi>k</mi></math></span> does not exist, we say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable. We say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable of order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> if it is infinitely chainable and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the smallest <span><math><mi>k</mi></math></span> for which <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>.</mo></mrow></math></span> In this note, we prove that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> iff <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.</p></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"216 ","pages":"Article 110256"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002256/pdfft?md5=07337618e4ae45b99cc48ba49eb461e1&pid=1-s2.0-S0167715224002256-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chainability of infinitely divisible measures\",\"authors\":\"Shaul K. Bar-Lev , Gérard Letac\",\"doi\":\"10.1016/j.spl.2024.110256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a positive measure on <span><math><mi>R</mi></math></span> with Laplace transform <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> defined on a set whose interior <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is nonempty and let <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mo>log</mo><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></mrow></math></span> be its cumulant transform. Then <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely divisible iff <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. If also <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is infinitely divisible, then <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and so forth, until we reach a <span><math><mi>k</mi></math></span> such that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not infinitely divisible. If such a <span><math><mi>k</mi></math></span> does not exist, we say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable. We say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable of order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> if it is infinitely chainable and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the smallest <span><math><mi>k</mi></math></span> for which <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>.</mo></mrow></math></span> In this note, we prove that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> iff <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.</p></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"216 \",\"pages\":\"Article 110256\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002256/pdfft?md5=07337618e4ae45b99cc48ba49eb461e1&pid=1-s2.0-S0167715224002256-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002256\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002256","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Let be a positive measure on with Laplace transform defined on a set whose interior is nonempty and let be its cumulant transform. Then is infinitely divisible iff is a Laplace transform of some positive measure . If also is infinitely divisible, then is a Laplace transform of some positive measure and so forth, until we reach a such that is not infinitely divisible. If such a does not exist, we say that is infinitely chainable. We say that is infinitely chainable of order if it is infinitely chainable and is the smallest for which In this note, we prove that is infinitely chainable order iff falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.