CICIoMT2024:用于 IoMT 多协议安全评估的基准数据集

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sajjad Dadkhah, Euclides Carlos Pinto Neto, Raphael Ferreira, Reginald Chukwuka Molokwu, Somayeh Sadeghi, Ali A. Ghorbani
{"title":"CICIoMT2024:用于 IoMT 多协议安全评估的基准数据集","authors":"Sajjad Dadkhah,&nbsp;Euclides Carlos Pinto Neto,&nbsp;Raphael Ferreira,&nbsp;Reginald Chukwuka Molokwu,&nbsp;Somayeh Sadeghi,&nbsp;Ali A. Ghorbani","doi":"10.1016/j.iot.2024.101351","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoT) is increasingly integrated into daily life, particularly in healthcare, through the Internet of Medical Things (IoMT). IoMT devices support services like continuous health monitoring but raise significant cybersecurity concerns due to their vulnerability to various attacks. The complexity and data volume of IoMT network traffic requires advanced methods to enhance security and reliability. Machine Learning (ML) offers techniques to detect, prevent, and mitigate cyberattacks. However, existing benchmark datasets lack essential features for robust IoMT security solutions, such as a reduced number of real devices, a limited variety of attacks, and a lack of extensive profiling. We propose a realistic benchmark dataset for IoMT security solutions development and evaluation to address these gaps. We executed 18 attacks on an IoMT testbed with 40 devices (25 real and 15 simulated), using protocols like Wi-Fi, MQTT, and Bluetooth. Supporting technologies, including dedicated network traffic collectors and a Faraday Cage, ensured data quality. The attacks fall into five categories: DDoS, DoS, Recon, MQTT, and spoofing. We aim to establish a baseline that complements existing datasets, aiding researchers in creating secure healthcare systems using ML. Beyond simulating attacks, we capture the lifecycle of IoMT devices from network entry to exit through profiling, allowing classifiers to identify device anomalies. The resulting <span><span>CICIoMT2024</span><svg><path></path></svg></span> dataset, published on the CIC dataset page, demonstrates that various methods can classify IoMT cyberattacks. This effort supports new IoMT security solutions and contributes to the broader field of cybersecurity in healthcare, ensuring more reliable IoMT device deployment.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101351"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542660524002920/pdfft?md5=0430302d374a16cfc8032840ccdad749&pid=1-s2.0-S2542660524002920-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CICIoMT2024: A benchmark dataset for multi-protocol security assessment in IoMT\",\"authors\":\"Sajjad Dadkhah,&nbsp;Euclides Carlos Pinto Neto,&nbsp;Raphael Ferreira,&nbsp;Reginald Chukwuka Molokwu,&nbsp;Somayeh Sadeghi,&nbsp;Ali A. Ghorbani\",\"doi\":\"10.1016/j.iot.2024.101351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Internet of Things (IoT) is increasingly integrated into daily life, particularly in healthcare, through the Internet of Medical Things (IoMT). IoMT devices support services like continuous health monitoring but raise significant cybersecurity concerns due to their vulnerability to various attacks. The complexity and data volume of IoMT network traffic requires advanced methods to enhance security and reliability. Machine Learning (ML) offers techniques to detect, prevent, and mitigate cyberattacks. However, existing benchmark datasets lack essential features for robust IoMT security solutions, such as a reduced number of real devices, a limited variety of attacks, and a lack of extensive profiling. We propose a realistic benchmark dataset for IoMT security solutions development and evaluation to address these gaps. We executed 18 attacks on an IoMT testbed with 40 devices (25 real and 15 simulated), using protocols like Wi-Fi, MQTT, and Bluetooth. Supporting technologies, including dedicated network traffic collectors and a Faraday Cage, ensured data quality. The attacks fall into five categories: DDoS, DoS, Recon, MQTT, and spoofing. We aim to establish a baseline that complements existing datasets, aiding researchers in creating secure healthcare systems using ML. Beyond simulating attacks, we capture the lifecycle of IoMT devices from network entry to exit through profiling, allowing classifiers to identify device anomalies. The resulting <span><span>CICIoMT2024</span><svg><path></path></svg></span> dataset, published on the CIC dataset page, demonstrates that various methods can classify IoMT cyberattacks. This effort supports new IoMT security solutions and contributes to the broader field of cybersecurity in healthcare, ensuring more reliable IoMT device deployment.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101351\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002920/pdfft?md5=0430302d374a16cfc8032840ccdad749&pid=1-s2.0-S2542660524002920-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002920\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002920","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

通过医疗物联网(IoMT),物联网(IoT)正日益融入日常生活,尤其是医疗保健领域。IoMT 设备支持持续健康监测等服务,但由于容易受到各种攻击,引发了严重的网络安全问题。IoMT 网络流量的复杂性和数据量要求采用先进的方法来提高安全性和可靠性。机器学习(ML)提供了检测、预防和减轻网络攻击的技术。然而,现有的基准数据集缺乏强大的 IoMT 安全解决方案所需的基本特征,例如真实设备数量减少、攻击种类有限以及缺乏广泛的剖析。为了弥补这些不足,我们提出了一个用于 IoMT 安全解决方案开发和评估的真实基准数据集。我们在拥有 40 台设备(25 台真实设备和 15 台模拟设备)的 IoMT 测试平台上使用 Wi-Fi、MQTT 和蓝牙等协议实施了 18 种攻击。包括专用网络流量收集器和法拉第笼在内的辅助技术确保了数据质量。攻击分为五类:DDoS、DoS、侦察、MQTT 和欺骗。我们的目标是建立一个基线,补充现有的数据集,帮助研究人员利用 ML 创建安全的医疗保健系统。除了模拟攻击外,我们还通过剖析捕捉 IoMT 设备从进入网络到退出网络的生命周期,使分类器能够识别设备异常。由此产生的 CICIoMT2024 数据集发布在 CIC 数据集页面上,展示了各种方法可以对 IoMT 网络攻击进行分类。这项工作支持新的 IoMT 安全解决方案,并为更广泛的医疗保健网络安全领域做出了贡献,从而确保更可靠的 IoMT 设备部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CICIoMT2024: A benchmark dataset for multi-protocol security assessment in IoMT

The Internet of Things (IoT) is increasingly integrated into daily life, particularly in healthcare, through the Internet of Medical Things (IoMT). IoMT devices support services like continuous health monitoring but raise significant cybersecurity concerns due to their vulnerability to various attacks. The complexity and data volume of IoMT network traffic requires advanced methods to enhance security and reliability. Machine Learning (ML) offers techniques to detect, prevent, and mitigate cyberattacks. However, existing benchmark datasets lack essential features for robust IoMT security solutions, such as a reduced number of real devices, a limited variety of attacks, and a lack of extensive profiling. We propose a realistic benchmark dataset for IoMT security solutions development and evaluation to address these gaps. We executed 18 attacks on an IoMT testbed with 40 devices (25 real and 15 simulated), using protocols like Wi-Fi, MQTT, and Bluetooth. Supporting technologies, including dedicated network traffic collectors and a Faraday Cage, ensured data quality. The attacks fall into five categories: DDoS, DoS, Recon, MQTT, and spoofing. We aim to establish a baseline that complements existing datasets, aiding researchers in creating secure healthcare systems using ML. Beyond simulating attacks, we capture the lifecycle of IoMT devices from network entry to exit through profiling, allowing classifiers to identify device anomalies. The resulting CICIoMT2024 dataset, published on the CIC dataset page, demonstrates that various methods can classify IoMT cyberattacks. This effort supports new IoMT security solutions and contributes to the broader field of cybersecurity in healthcare, ensuring more reliable IoMT device deployment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信