{"title":"电动汽车充电行为的隐私保护估计:基于差异隐私的联合学习方法","authors":"Xiuping Kong , Lin Lu , Ke Xiong","doi":"10.1016/j.iot.2024.101344","DOIUrl":null,"url":null,"abstract":"<div><p>With the popularity of connected electric vehicles, the openness and sharing of charging data between stakeholders allows a more accurate estimation of charging behavior, which is valuable for optimizing energy systems and facilitating travel convenience. However, to enable such an effective mechanism, the challenge of data security and privacy should be addressed. Federated learning in the vehicular network is appealing for utilizing individual vehicle data while preserving data privacy. We propose an improved local differential privacy-based federated learning approach for modeling charging session prediction problems while preserving user privacy against the threat from a honest-but-curious server. In this approach, all vehicles, within the coordination of a cloud server, collaboratively establish a global regression network through parameter exchange. Meanwhile, the servers may belong to third-party model owners and can be semi-honest when inferring private information on the collected model parameters. Hence, local differential privacy is adopted to perturb the parameters. Additionally, a combination of local and global models via elastic synchronization is proposed to improve the accuracy of the learned noisy global model. Through the test on a real data set, the results show the superiority of the proposed algorithm over traditional noisy federated learning methods. Furthermore, the practical value of the proposed method is validated with a real-world charging case. Such an accurate charging session prediction service for electric vehicle drivers facilitates charging and travel convenience in the green transportation world.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101344"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving estimation of electric vehicle charging behavior: A federated learning approach based on differential privacy\",\"authors\":\"Xiuping Kong , Lin Lu , Ke Xiong\",\"doi\":\"10.1016/j.iot.2024.101344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the popularity of connected electric vehicles, the openness and sharing of charging data between stakeholders allows a more accurate estimation of charging behavior, which is valuable for optimizing energy systems and facilitating travel convenience. However, to enable such an effective mechanism, the challenge of data security and privacy should be addressed. Federated learning in the vehicular network is appealing for utilizing individual vehicle data while preserving data privacy. We propose an improved local differential privacy-based federated learning approach for modeling charging session prediction problems while preserving user privacy against the threat from a honest-but-curious server. In this approach, all vehicles, within the coordination of a cloud server, collaboratively establish a global regression network through parameter exchange. Meanwhile, the servers may belong to third-party model owners and can be semi-honest when inferring private information on the collected model parameters. Hence, local differential privacy is adopted to perturb the parameters. Additionally, a combination of local and global models via elastic synchronization is proposed to improve the accuracy of the learned noisy global model. Through the test on a real data set, the results show the superiority of the proposed algorithm over traditional noisy federated learning methods. Furthermore, the practical value of the proposed method is validated with a real-world charging case. Such an accurate charging session prediction service for electric vehicle drivers facilitates charging and travel convenience in the green transportation world.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101344\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002853\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002853","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Privacy-preserving estimation of electric vehicle charging behavior: A federated learning approach based on differential privacy
With the popularity of connected electric vehicles, the openness and sharing of charging data between stakeholders allows a more accurate estimation of charging behavior, which is valuable for optimizing energy systems and facilitating travel convenience. However, to enable such an effective mechanism, the challenge of data security and privacy should be addressed. Federated learning in the vehicular network is appealing for utilizing individual vehicle data while preserving data privacy. We propose an improved local differential privacy-based federated learning approach for modeling charging session prediction problems while preserving user privacy against the threat from a honest-but-curious server. In this approach, all vehicles, within the coordination of a cloud server, collaboratively establish a global regression network through parameter exchange. Meanwhile, the servers may belong to third-party model owners and can be semi-honest when inferring private information on the collected model parameters. Hence, local differential privacy is adopted to perturb the parameters. Additionally, a combination of local and global models via elastic synchronization is proposed to improve the accuracy of the learned noisy global model. Through the test on a real data set, the results show the superiority of the proposed algorithm over traditional noisy federated learning methods. Furthermore, the practical value of the proposed method is validated with a real-world charging case. Such an accurate charging session prediction service for electric vehicle drivers facilitates charging and travel convenience in the green transportation world.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.