{"title":"Nasonia vitripennis 的脂肪生成:糖化学的影响、三酰甘油的优先生成以及与黑腹果蝇脂肪酸生物合成能力的比较","authors":"Joachim Ruther, Julian Hoheneder, Vera Koschany","doi":"10.1016/j.ibmb.2024.104179","DOIUrl":null,"url":null,"abstract":"<div><p>Sugar consumption increases the fecundity and longevity in many species of parasitic wasps (parasitoids) but whether these insects use sugars to synthesize significant amounts of fatty acids and storage fat de novo (lipogenesis) is discussed controversially. It has long been assumed that parasitic wasps lost this ability during evolution, mainly because in several species wasps with ad libitum access to sugar did not increase teneral lipid levels. Recent studies demonstrated that many species are nonetheless capable of synthesizing fatty acids de novo from glucose. It is unclear, however, whether also other sugars are used for fatty acid biosynthesis and whether an increase of sugar concentration to levels occurring in natural sugar sources translates into higher fatty acid production. Furthermore, it has been suggested that fatty acid production in parasitoids is negligible compared to species increasing teneral fat reserves such as <em>Drosophila melanogaster.</em> Here we show by stable isotope labeling experiments that females of <em>Nasonia vitripennis</em> convert D-glucose, D-fructose, sucrose, and α,α-trehalose, major sugars consumed by adult parasitoids in nature, equally well to palmitic, stearic, oleic, and linoleic acid. Lipogenesis from D-galactose occurs as well albeit to a lesser extent. Sugar concentration is crucial for lipogenic activity, and almost 80% of de novo synthesized fatty acids were incorporated into storage fat (triacylglycerides). Comparison of fatty acid biosynthesis within a 48-h feeding period with <em>D. melanogaster</em> revealed that <em>N. vitripennis</em> produced approximately half as many fatty acids per body mass unit. Both species fed equal amounts of the glucose offered. We conclude that lipogenesis is far from negligible in <em>N. vitripennis</em> and plays an important role for the energy balance when teneral lipid reserves deplete.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"173 ","pages":"Article 104179"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0965174824001103/pdfft?md5=d910e65536a49cc9d870ed05ed81e8d5&pid=1-s2.0-S0965174824001103-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lipogenesis in Nasonia vitripennis: Influence of sugar chemistry, preferential production of triacylglycerides, and comparison of fatty acid biosynthetic capacity with Drosophila melanogaster\",\"authors\":\"Joachim Ruther, Julian Hoheneder, Vera Koschany\",\"doi\":\"10.1016/j.ibmb.2024.104179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sugar consumption increases the fecundity and longevity in many species of parasitic wasps (parasitoids) but whether these insects use sugars to synthesize significant amounts of fatty acids and storage fat de novo (lipogenesis) is discussed controversially. It has long been assumed that parasitic wasps lost this ability during evolution, mainly because in several species wasps with ad libitum access to sugar did not increase teneral lipid levels. Recent studies demonstrated that many species are nonetheless capable of synthesizing fatty acids de novo from glucose. It is unclear, however, whether also other sugars are used for fatty acid biosynthesis and whether an increase of sugar concentration to levels occurring in natural sugar sources translates into higher fatty acid production. Furthermore, it has been suggested that fatty acid production in parasitoids is negligible compared to species increasing teneral fat reserves such as <em>Drosophila melanogaster.</em> Here we show by stable isotope labeling experiments that females of <em>Nasonia vitripennis</em> convert D-glucose, D-fructose, sucrose, and α,α-trehalose, major sugars consumed by adult parasitoids in nature, equally well to palmitic, stearic, oleic, and linoleic acid. Lipogenesis from D-galactose occurs as well albeit to a lesser extent. Sugar concentration is crucial for lipogenic activity, and almost 80% of de novo synthesized fatty acids were incorporated into storage fat (triacylglycerides). Comparison of fatty acid biosynthesis within a 48-h feeding period with <em>D. melanogaster</em> revealed that <em>N. vitripennis</em> produced approximately half as many fatty acids per body mass unit. Both species fed equal amounts of the glucose offered. We conclude that lipogenesis is far from negligible in <em>N. vitripennis</em> and plays an important role for the energy balance when teneral lipid reserves deplete.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"173 \",\"pages\":\"Article 104179\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0965174824001103/pdfft?md5=d910e65536a49cc9d870ed05ed81e8d5&pid=1-s2.0-S0965174824001103-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174824001103\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824001103","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lipogenesis in Nasonia vitripennis: Influence of sugar chemistry, preferential production of triacylglycerides, and comparison of fatty acid biosynthetic capacity with Drosophila melanogaster
Sugar consumption increases the fecundity and longevity in many species of parasitic wasps (parasitoids) but whether these insects use sugars to synthesize significant amounts of fatty acids and storage fat de novo (lipogenesis) is discussed controversially. It has long been assumed that parasitic wasps lost this ability during evolution, mainly because in several species wasps with ad libitum access to sugar did not increase teneral lipid levels. Recent studies demonstrated that many species are nonetheless capable of synthesizing fatty acids de novo from glucose. It is unclear, however, whether also other sugars are used for fatty acid biosynthesis and whether an increase of sugar concentration to levels occurring in natural sugar sources translates into higher fatty acid production. Furthermore, it has been suggested that fatty acid production in parasitoids is negligible compared to species increasing teneral fat reserves such as Drosophila melanogaster. Here we show by stable isotope labeling experiments that females of Nasonia vitripennis convert D-glucose, D-fructose, sucrose, and α,α-trehalose, major sugars consumed by adult parasitoids in nature, equally well to palmitic, stearic, oleic, and linoleic acid. Lipogenesis from D-galactose occurs as well albeit to a lesser extent. Sugar concentration is crucial for lipogenic activity, and almost 80% of de novo synthesized fatty acids were incorporated into storage fat (triacylglycerides). Comparison of fatty acid biosynthesis within a 48-h feeding period with D. melanogaster revealed that N. vitripennis produced approximately half as many fatty acids per body mass unit. Both species fed equal amounts of the glucose offered. We conclude that lipogenesis is far from negligible in N. vitripennis and plays an important role for the energy balance when teneral lipid reserves deplete.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.