{"title":"固定输入条件下具有非线性无序的一维系统中的幂律局部化","authors":"Ba Phi Nguyen , Kihong Kim","doi":"10.1016/j.physd.2024.134342","DOIUrl":null,"url":null,"abstract":"<div><p>We conduct a numerical investigation into wave propagation and localization in one-dimensional lattices subject to nonlinear disorder, focusing on cases with fixed input conditions. Utilizing a discrete nonlinear Schrödinger equation with Kerr-type nonlinearity and a random coefficient, we compute the averages and variances of the transmittance, <span><math><mi>T</mi></math></span>, and its logarithm, as functions of the system size <span><math><mi>L</mi></math></span>, while maintaining constant intensity for the incident wave. In cases of purely nonlinear disorder, we observe power-law localization characterized by <span><math><mrow><mrow><mo>〈</mo><mi>T</mi><mo>〉</mo></mrow><mo>∝</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>a</mi></mrow></msub></mrow></msup></mrow></math></span> and <span><math><mrow><mrow><mo>〈</mo><mo>ln</mo><mi>T</mi><mo>〉</mo></mrow><mo>≈</mo><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>ln</mo><mi>L</mi></mrow></math></span> for sufficiently large <span><math><mi>L</mi></math></span>. At low input intensities, a transition from exponential to power-law decay in <span><math><mrow><mo>〈</mo><mi>T</mi><mo>〉</mo></mrow></math></span> occurs as <span><math><mi>L</mi></math></span> increases. The exponents <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> are nearly identical, converging to approximately 0.5 as the strength of the nonlinear disorder, <span><math><mi>β</mi></math></span>, increases. Additionally, the variance of <span><math><mi>T</mi></math></span> decays according to a power law with an exponent close to 1, and the variance of <span><math><mrow><mo>ln</mo><mi>T</mi></mrow></math></span> approaches a small constant as <span><math><mi>L</mi></math></span> increases. These findings are consistent with an underlying log-normal distribution of <span><math><mi>T</mi></math></span> and suggest that wave propagation behavior becomes nearly deterministic as the system size increases. When both linear and nonlinear disorders are present, we observe a transition from power-law to exponential decay in transmittance with increasing <span><math><mi>L</mi></math></span> when the strength of linear disorder, <span><math><mi>V</mi></math></span>, is less than <span><math><mi>β</mi></math></span>. As <span><math><mi>V</mi></math></span> increases, the region exhibiting power-law localization diminishes and eventually disappears when <span><math><mi>V</mi></math></span> exceeds <span><math><mi>β</mi></math></span>, leading to standard Anderson localization.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-law localization in one-dimensional systems with nonlinear disorder under fixed input conditions\",\"authors\":\"Ba Phi Nguyen , Kihong Kim\",\"doi\":\"10.1016/j.physd.2024.134342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We conduct a numerical investigation into wave propagation and localization in one-dimensional lattices subject to nonlinear disorder, focusing on cases with fixed input conditions. Utilizing a discrete nonlinear Schrödinger equation with Kerr-type nonlinearity and a random coefficient, we compute the averages and variances of the transmittance, <span><math><mi>T</mi></math></span>, and its logarithm, as functions of the system size <span><math><mi>L</mi></math></span>, while maintaining constant intensity for the incident wave. In cases of purely nonlinear disorder, we observe power-law localization characterized by <span><math><mrow><mrow><mo>〈</mo><mi>T</mi><mo>〉</mo></mrow><mo>∝</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>a</mi></mrow></msub></mrow></msup></mrow></math></span> and <span><math><mrow><mrow><mo>〈</mo><mo>ln</mo><mi>T</mi><mo>〉</mo></mrow><mo>≈</mo><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>ln</mo><mi>L</mi></mrow></math></span> for sufficiently large <span><math><mi>L</mi></math></span>. At low input intensities, a transition from exponential to power-law decay in <span><math><mrow><mo>〈</mo><mi>T</mi><mo>〉</mo></mrow></math></span> occurs as <span><math><mi>L</mi></math></span> increases. The exponents <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> are nearly identical, converging to approximately 0.5 as the strength of the nonlinear disorder, <span><math><mi>β</mi></math></span>, increases. Additionally, the variance of <span><math><mi>T</mi></math></span> decays according to a power law with an exponent close to 1, and the variance of <span><math><mrow><mo>ln</mo><mi>T</mi></mrow></math></span> approaches a small constant as <span><math><mi>L</mi></math></span> increases. These findings are consistent with an underlying log-normal distribution of <span><math><mi>T</mi></math></span> and suggest that wave propagation behavior becomes nearly deterministic as the system size increases. When both linear and nonlinear disorders are present, we observe a transition from power-law to exponential decay in transmittance with increasing <span><math><mi>L</mi></math></span> when the strength of linear disorder, <span><math><mi>V</mi></math></span>, is less than <span><math><mi>β</mi></math></span>. As <span><math><mi>V</mi></math></span> increases, the region exhibiting power-law localization diminishes and eventually disappears when <span><math><mi>V</mi></math></span> exceeds <span><math><mi>β</mi></math></span>, leading to standard Anderson localization.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们对受到非线性无序影响的一维晶格中的波传播和定位进行了数值研究,重点是具有固定输入条件的情况。利用具有克尔型非线性和随机系数的离散非线性薛定谔方程,我们计算了透射率 T 及其对数的平均值和方差,它们是系统大小 L 的函数,同时入射波的强度保持不变。在纯粹非线性无序的情况下,我们观察到幂律局部化,其特征是 〈T〉∝L-γa 和 〈lnT〉≈-γglnL(对于足够大的 L)。在低输入强度下,随着 L 的增加,〈T〉会从指数衰减过渡到幂律衰减。指数 γa 和 γg 几乎相同,随着非线性无序度 β 的增加,指数 γa 和 γg 收敛到大约 0.5。此外,T 的方差按照指数接近 1 的幂律衰减,lnT 的方差随着 L 的增大接近一个小常数。这些发现与 T 的基本对数正态分布一致,并表明随着系统规模的增大,波的传播行为变得近乎确定性。当线性紊乱和非线性紊乱同时存在时,当线性紊乱的强度 V 小于 β 时,我们观察到透射率随着 L 的增大从幂律衰减过渡到指数衰减。
Power-law localization in one-dimensional systems with nonlinear disorder under fixed input conditions
We conduct a numerical investigation into wave propagation and localization in one-dimensional lattices subject to nonlinear disorder, focusing on cases with fixed input conditions. Utilizing a discrete nonlinear Schrödinger equation with Kerr-type nonlinearity and a random coefficient, we compute the averages and variances of the transmittance, , and its logarithm, as functions of the system size , while maintaining constant intensity for the incident wave. In cases of purely nonlinear disorder, we observe power-law localization characterized by and for sufficiently large . At low input intensities, a transition from exponential to power-law decay in occurs as increases. The exponents and are nearly identical, converging to approximately 0.5 as the strength of the nonlinear disorder, , increases. Additionally, the variance of decays according to a power law with an exponent close to 1, and the variance of approaches a small constant as increases. These findings are consistent with an underlying log-normal distribution of and suggest that wave propagation behavior becomes nearly deterministic as the system size increases. When both linear and nonlinear disorders are present, we observe a transition from power-law to exponential decay in transmittance with increasing when the strength of linear disorder, , is less than . As increases, the region exhibiting power-law localization diminishes and eventually disappears when exceeds , leading to standard Anderson localization.