{"title":"剂量前对 BeO 辐射计中 TL 和 OSL 信号影响的比较分析","authors":"Engin Aşlar","doi":"10.1016/j.radmeas.2024.107279","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates in detail the effects of predose on TL and OSL signals for BeO dosimeters. The TL and OSL signals were deconvoluted to each peak and component. As a result of deconvolution, the variations in the kinetic parameters (<em>E, T</em><sub><em>max</em></sub><em>, b</em>) for the TL signals and the lifetime values of the OSL signals were investigated. In addition, sensitivity changes according to predose were monitored for each peak and component. Finally, dose response curves were studied using the dose linearity index <em>(f(D</em>)) for each peak and component. Accordingly, the peak structures and kinetic parameters did not change according to the predose for the TL signal, whereas variations in the lifetime values for the OSL signal were observed, especially at the initial dose values (0.1 and 0.2 Gy). There was no change in sensitivity according to the predose for the total area condition although each peak and component exhibited independent behavior. Therefore, TL and OSL signals should be evaluated based on the total area in predose applications. The TL and OSL dose response curves exhibited different behaviors according to predose. TL dose response curves were not affected by the predose except for 1000 Gy, while the OSL dose response curves were affected by the predose considering the total area condition. The possible reason for the differences between the TL and OSL dose response curves is the significant transfer effect in the OSL signal at low doses, which results in greater changes at low doses compared to the TL signal. Also, thermal quenching effects may have resulted in lower intensity in the case of the TL signal. In future studies, preheating tests and thermal quenching corrections on TL peaks at high predoses may increase our understanding of deep trap interactions in BeO dosimeters.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of predose effects on TL and OSL signals in BeO dosimeters\",\"authors\":\"Engin Aşlar\",\"doi\":\"10.1016/j.radmeas.2024.107279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates in detail the effects of predose on TL and OSL signals for BeO dosimeters. The TL and OSL signals were deconvoluted to each peak and component. As a result of deconvolution, the variations in the kinetic parameters (<em>E, T</em><sub><em>max</em></sub><em>, b</em>) for the TL signals and the lifetime values of the OSL signals were investigated. In addition, sensitivity changes according to predose were monitored for each peak and component. Finally, dose response curves were studied using the dose linearity index <em>(f(D</em>)) for each peak and component. Accordingly, the peak structures and kinetic parameters did not change according to the predose for the TL signal, whereas variations in the lifetime values for the OSL signal were observed, especially at the initial dose values (0.1 and 0.2 Gy). There was no change in sensitivity according to the predose for the total area condition although each peak and component exhibited independent behavior. Therefore, TL and OSL signals should be evaluated based on the total area in predose applications. The TL and OSL dose response curves exhibited different behaviors according to predose. TL dose response curves were not affected by the predose except for 1000 Gy, while the OSL dose response curves were affected by the predose considering the total area condition. The possible reason for the differences between the TL and OSL dose response curves is the significant transfer effect in the OSL signal at low doses, which results in greater changes at low doses compared to the TL signal. Also, thermal quenching effects may have resulted in lower intensity in the case of the TL signal. In future studies, preheating tests and thermal quenching corrections on TL peaks at high predoses may increase our understanding of deep trap interactions in BeO dosimeters.</p></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448724002270\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002270","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Comparative analysis of predose effects on TL and OSL signals in BeO dosimeters
This study investigates in detail the effects of predose on TL and OSL signals for BeO dosimeters. The TL and OSL signals were deconvoluted to each peak and component. As a result of deconvolution, the variations in the kinetic parameters (E, Tmax, b) for the TL signals and the lifetime values of the OSL signals were investigated. In addition, sensitivity changes according to predose were monitored for each peak and component. Finally, dose response curves were studied using the dose linearity index (f(D)) for each peak and component. Accordingly, the peak structures and kinetic parameters did not change according to the predose for the TL signal, whereas variations in the lifetime values for the OSL signal were observed, especially at the initial dose values (0.1 and 0.2 Gy). There was no change in sensitivity according to the predose for the total area condition although each peak and component exhibited independent behavior. Therefore, TL and OSL signals should be evaluated based on the total area in predose applications. The TL and OSL dose response curves exhibited different behaviors according to predose. TL dose response curves were not affected by the predose except for 1000 Gy, while the OSL dose response curves were affected by the predose considering the total area condition. The possible reason for the differences between the TL and OSL dose response curves is the significant transfer effect in the OSL signal at low doses, which results in greater changes at low doses compared to the TL signal. Also, thermal quenching effects may have resulted in lower intensity in the case of the TL signal. In future studies, preheating tests and thermal quenching corrections on TL peaks at high predoses may increase our understanding of deep trap interactions in BeO dosimeters.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.