{"title":"帕沃尼斯蒙斯以南火星喷溅锥的证据","authors":"","doi":"10.1016/j.icarus.2024.116286","DOIUrl":null,"url":null,"abstract":"<div><p>Spatter cones are a common mafic explosive volcanic feature observed on Earth associated with Hawaiian and Strombolian-style lava fountaining. Across Mars there are numerous explosive volcanic features assessed to be accumulations of cold pyroclasts (e.g., scoria cones, tuff rings) but identification of welded and fused explosive deposits (i.e., spatter) has only recently been investigated. We present evidence indicating the presence of a Martian spatter cone south of Pavonis Mons and a comparison to a spatter cone formed during the 2021 Fagradalsfjall eruption, Iceland. The morphology and morphometry of the possible Martian spatter cone are more consistent with agglutinated rock like the spatter cone formed during the Fagradalsfjall eruption than poorly consolidated tephra, characteristic of scoria cones. In addition, the size of the two spatter cones falls within anticipated dimensions based on a simple ballistic trajectory model. Evidence for spatter included high angled slopes, knobby yet layered surface textures, rounded boulder talus, and thermophysical properties consistent with material that is more indicative of rock than scoria. The evidence indicates that the volcanic feature South of Pavonis Mons should be classified as a spatter cone. Identification of a Martian spatter cone has implications for eruption dynamics, magmatic volatile content, and environmental conditions.</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019103524003464/pdfft?md5=75d7e7702bddf8ff8a471d18abbbc5fe&pid=1-s2.0-S0019103524003464-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evidence of a Martian spatter cone south of Pavonis Mons\",\"authors\":\"\",\"doi\":\"10.1016/j.icarus.2024.116286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatter cones are a common mafic explosive volcanic feature observed on Earth associated with Hawaiian and Strombolian-style lava fountaining. Across Mars there are numerous explosive volcanic features assessed to be accumulations of cold pyroclasts (e.g., scoria cones, tuff rings) but identification of welded and fused explosive deposits (i.e., spatter) has only recently been investigated. We present evidence indicating the presence of a Martian spatter cone south of Pavonis Mons and a comparison to a spatter cone formed during the 2021 Fagradalsfjall eruption, Iceland. The morphology and morphometry of the possible Martian spatter cone are more consistent with agglutinated rock like the spatter cone formed during the Fagradalsfjall eruption than poorly consolidated tephra, characteristic of scoria cones. In addition, the size of the two spatter cones falls within anticipated dimensions based on a simple ballistic trajectory model. Evidence for spatter included high angled slopes, knobby yet layered surface textures, rounded boulder talus, and thermophysical properties consistent with material that is more indicative of rock than scoria. The evidence indicates that the volcanic feature South of Pavonis Mons should be classified as a spatter cone. Identification of a Martian spatter cone has implications for eruption dynamics, magmatic volatile content, and environmental conditions.</p></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019103524003464/pdfft?md5=75d7e7702bddf8ff8a471d18abbbc5fe&pid=1-s2.0-S0019103524003464-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524003464\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003464","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Evidence of a Martian spatter cone south of Pavonis Mons
Spatter cones are a common mafic explosive volcanic feature observed on Earth associated with Hawaiian and Strombolian-style lava fountaining. Across Mars there are numerous explosive volcanic features assessed to be accumulations of cold pyroclasts (e.g., scoria cones, tuff rings) but identification of welded and fused explosive deposits (i.e., spatter) has only recently been investigated. We present evidence indicating the presence of a Martian spatter cone south of Pavonis Mons and a comparison to a spatter cone formed during the 2021 Fagradalsfjall eruption, Iceland. The morphology and morphometry of the possible Martian spatter cone are more consistent with agglutinated rock like the spatter cone formed during the Fagradalsfjall eruption than poorly consolidated tephra, characteristic of scoria cones. In addition, the size of the two spatter cones falls within anticipated dimensions based on a simple ballistic trajectory model. Evidence for spatter included high angled slopes, knobby yet layered surface textures, rounded boulder talus, and thermophysical properties consistent with material that is more indicative of rock than scoria. The evidence indicates that the volcanic feature South of Pavonis Mons should be classified as a spatter cone. Identification of a Martian spatter cone has implications for eruption dynamics, magmatic volatile content, and environmental conditions.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.