通过形态可控的 ZIF-8 晶体实现 HIV-1 DNA 的高效荧光淬灭和低限检测

IF 3.3 3区 物理与天体物理 Q2 OPTICS
{"title":"通过形态可控的 ZIF-8 晶体实现 HIV-1 DNA 的高效荧光淬灭和低限检测","authors":"","doi":"10.1016/j.jlumin.2024.120867","DOIUrl":null,"url":null,"abstract":"<div><p>ZIF-8 (zinc-methylimidazolate framework-8) has shown promising applications as a fluorescence sensing platform, particularly in fluorescence quenching sensors for various biological and chemical analyses and detections. However, the impact of the morphology of ZIF-8 crystals on their performance of biomolecule detection, especially DNA detection, remains to be explored. In this study, six types of ZIF-8 crystals with different morphology (cubic, rough octahedral, flakes, rhombic, dodecahedral, and hexapod) are successfully synthesized by incorporating different concentrations of the surfactant/end-capping agent, namely cetyltrimethylammonium bromide (CTAB) and/or tris(hydroxymethyl)aminomethane (TRIS). These crystals are characterized in terms of morphology, crystal structure, specific surface area, and electrostatic adsorption capacity. Subsequently, these morphologically different ZIF-8 crystals are combined with fluorophore carboxyfluorescein (FAM)-labeled single-stranded DNA (ss-DNA) to form FAM-DNA@ZIF-8 biosensor. Then, their fluorescence quenching efficiency is characterized by using the fluorescence spectroscopy. The measurement results show that, due to its higher external specific surface area and zeta potential thereby higher electrostatic adsorption capacity, the cubic ZIF-8 crystal can effectively capture more FAM-DNA molecules through the electrostatic adsorption and achieve high fluorescence quenching efficiency via the fluorescence resonance energy transfer mechanism. Thus, the fluorescence quenching efficiency of the cubic FAM-DNA@ZIF-8 reaches up to 98.1 %. Finally, the cubic FAM-DNA@ZIF-8 biosensor is used to detect the complementary target HIV-1 DNA via the fluorescence recovery. The experimental results show that the fluorescence recovery efficiency of the FAM-DNA@ZIF-8 reaches up to 40.8 upon the addition of complementary target ssDNA, significantly higher than the recovery efficiency when non-complementary target DNA is introduced. Also, both fluorescence quenching efficiency and recovery efficiency of the cubic FAM-DNA@ZIF-8 are much higher than those of the reported biosensors based on ZIF-8 crystals with non-optimal morphology. Additionally, the fluorescence recovery sensitivity of the biosensor is 0.536/(nM⋅mL), with a detection limit as low as 1.37 nM. In addition, its detection performance remains almost unchanged after ten days of storage. These findings provide valuable insights for optimizing ZIF-8-based DNA biosensor.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient fluorescence quenching and low-limit detection of HIV-1 DNA via morphology controlled ZIF-8 crystals\",\"authors\":\"\",\"doi\":\"10.1016/j.jlumin.2024.120867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>ZIF-8 (zinc-methylimidazolate framework-8) has shown promising applications as a fluorescence sensing platform, particularly in fluorescence quenching sensors for various biological and chemical analyses and detections. However, the impact of the morphology of ZIF-8 crystals on their performance of biomolecule detection, especially DNA detection, remains to be explored. In this study, six types of ZIF-8 crystals with different morphology (cubic, rough octahedral, flakes, rhombic, dodecahedral, and hexapod) are successfully synthesized by incorporating different concentrations of the surfactant/end-capping agent, namely cetyltrimethylammonium bromide (CTAB) and/or tris(hydroxymethyl)aminomethane (TRIS). These crystals are characterized in terms of morphology, crystal structure, specific surface area, and electrostatic adsorption capacity. Subsequently, these morphologically different ZIF-8 crystals are combined with fluorophore carboxyfluorescein (FAM)-labeled single-stranded DNA (ss-DNA) to form FAM-DNA@ZIF-8 biosensor. Then, their fluorescence quenching efficiency is characterized by using the fluorescence spectroscopy. The measurement results show that, due to its higher external specific surface area and zeta potential thereby higher electrostatic adsorption capacity, the cubic ZIF-8 crystal can effectively capture more FAM-DNA molecules through the electrostatic adsorption and achieve high fluorescence quenching efficiency via the fluorescence resonance energy transfer mechanism. Thus, the fluorescence quenching efficiency of the cubic FAM-DNA@ZIF-8 reaches up to 98.1 %. Finally, the cubic FAM-DNA@ZIF-8 biosensor is used to detect the complementary target HIV-1 DNA via the fluorescence recovery. The experimental results show that the fluorescence recovery efficiency of the FAM-DNA@ZIF-8 reaches up to 40.8 upon the addition of complementary target ssDNA, significantly higher than the recovery efficiency when non-complementary target DNA is introduced. Also, both fluorescence quenching efficiency and recovery efficiency of the cubic FAM-DNA@ZIF-8 are much higher than those of the reported biosensors based on ZIF-8 crystals with non-optimal morphology. Additionally, the fluorescence recovery sensitivity of the biosensor is 0.536/(nM⋅mL), with a detection limit as low as 1.37 nM. In addition, its detection performance remains almost unchanged after ten days of storage. These findings provide valuable insights for optimizing ZIF-8-based DNA biosensor.</p></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231324004319\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004319","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

ZIF-8(甲基咪唑啉锌骨架-8)作为一种荧光传感平台,特别是用于各种生物和化学分析与检测的荧光淬灭传感器,已经显示出广阔的应用前景。然而,ZIF-8 晶体的形态对其生物大分子检测(尤其是 DNA 检测)性能的影响仍有待探索。本研究通过加入不同浓度的表面活性剂/端盖剂,即十六烷基三甲基溴化铵(CTAB)和/或三(羟甲基)氨基甲烷(TRIS),成功合成了六种不同形态的 ZIF-8 晶体(立方体、粗糙八面体、片状、菱形、十二面体和六面体)。这些晶体在形态、晶体结构、比表面积和静电吸附能力等方面都具有特征。随后,这些形态各异的 ZIF-8 晶体与荧光团羧基荧光素(FAM)标记的单链 DNA(ss-DNA)结合,形成 FAM-DNA@ZIF-8 生物传感器。然后,利用荧光光谱对其荧光淬灭效率进行了表征。测量结果表明,由于立方ZIF-8晶体具有较高的外比表面积和zeta电位,因而具有较高的静电吸附能力,能通过静电吸附有效捕获更多的FAM-DNA分子,并通过荧光共振能量转移机制实现较高的荧光淬灭效率。因此,立方 FAM-DNA@ZIF-8 的荧光淬灭效率高达 98.1%。最后,立方 FAM-DNA@ZIF-8 生物传感器被用于通过荧光恢复检测互补目标 HIV-1 DNA。实验结果表明,加入互补靶 ssDNA 后,FAM-DNA@ZIF-8 的荧光恢复效率高达 40.8,明显高于引入非互补靶 DNA 时的恢复效率。同时,立方 FAM-DNA@ZIF-8 的荧光淬灭效率和回收效率都远高于已报道的基于非最佳形态 ZIF-8 晶体的生物传感器。此外,该生物传感器的荧光恢复灵敏度为 0.536/(nM-mL),检测限低至 1.37 nM。此外,其检测性能在储存十天后几乎保持不变。这些发现为优化基于 ZIF-8 的 DNA 生物传感器提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient fluorescence quenching and low-limit detection of HIV-1 DNA via morphology controlled ZIF-8 crystals

ZIF-8 (zinc-methylimidazolate framework-8) has shown promising applications as a fluorescence sensing platform, particularly in fluorescence quenching sensors for various biological and chemical analyses and detections. However, the impact of the morphology of ZIF-8 crystals on their performance of biomolecule detection, especially DNA detection, remains to be explored. In this study, six types of ZIF-8 crystals with different morphology (cubic, rough octahedral, flakes, rhombic, dodecahedral, and hexapod) are successfully synthesized by incorporating different concentrations of the surfactant/end-capping agent, namely cetyltrimethylammonium bromide (CTAB) and/or tris(hydroxymethyl)aminomethane (TRIS). These crystals are characterized in terms of morphology, crystal structure, specific surface area, and electrostatic adsorption capacity. Subsequently, these morphologically different ZIF-8 crystals are combined with fluorophore carboxyfluorescein (FAM)-labeled single-stranded DNA (ss-DNA) to form FAM-DNA@ZIF-8 biosensor. Then, their fluorescence quenching efficiency is characterized by using the fluorescence spectroscopy. The measurement results show that, due to its higher external specific surface area and zeta potential thereby higher electrostatic adsorption capacity, the cubic ZIF-8 crystal can effectively capture more FAM-DNA molecules through the electrostatic adsorption and achieve high fluorescence quenching efficiency via the fluorescence resonance energy transfer mechanism. Thus, the fluorescence quenching efficiency of the cubic FAM-DNA@ZIF-8 reaches up to 98.1 %. Finally, the cubic FAM-DNA@ZIF-8 biosensor is used to detect the complementary target HIV-1 DNA via the fluorescence recovery. The experimental results show that the fluorescence recovery efficiency of the FAM-DNA@ZIF-8 reaches up to 40.8 upon the addition of complementary target ssDNA, significantly higher than the recovery efficiency when non-complementary target DNA is introduced. Also, both fluorescence quenching efficiency and recovery efficiency of the cubic FAM-DNA@ZIF-8 are much higher than those of the reported biosensors based on ZIF-8 crystals with non-optimal morphology. Additionally, the fluorescence recovery sensitivity of the biosensor is 0.536/(nM⋅mL), with a detection limit as low as 1.37 nM. In addition, its detection performance remains almost unchanged after ten days of storage. These findings provide valuable insights for optimizing ZIF-8-based DNA biosensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信